SSE is now unconditionally enabled any where and most of math.h is now
actually implemented. using __builtin_<func> lead to many hangs where
the builtin function would just call itself.
I had not understood how MSIs work and I was unnecessarily routing them
through IOAPIC. This is not necessary and should not be done :D
Also MSIs were reserving interrupts that IOAPIC was capable of
generating. Now IOAPIC and MSIs use different set of interrupts so
IOAPIC can use more interrupts if needed.
This makes scheduler preemption much cleaner as bsb does not have to
send smp messages to notify other processes about timer interrupt.
Also PIT percision is now "full" 0.8 us instead of 1 ms that I was using
before.
Change Semaphore -> ThreadBlocker
This was not a semaphore, I just named it one because I didn't know
what semaphore was. I have meant to change this sooner, but it was in
no way urgent :D
Implement SMP events. Processors can now be sent SMP events through
IPIs. SMP events can be sent either to a single processor or broadcasted
to every processor.
PageTable::{map_page,map_range,unmap_page,unmap_range}() now send SMP
event to invalidate TLB caches for the changed pages.
Scheduler no longer uses a global run queue. Each processor has its own
scheduler that keeps track of the load on the processor. Once every
second schedulers do load balancing. Schedulers have no access to other
processors' schedulers, they just see approximate loads. If scheduler
decides that it has too much load, it will send a thread to another
processor through a SMP event.
Schedulers are currently run using the timer interrupt on BSB. This
should be not the case, and each processor should use its LAPIC timer
for interrupts. There is no reason to broadcast SMP event to all
processors when BSB gets timer interrupt.
Old scheduler only achieved 20% idle load on qemu. That was probably a
very inefficient implementation. This new scheduler seems to average
around 1% idle load. This is much closer to what I would expect. On my
own laptop idle load seems to be only around 0.5% on each processor.
This was broken when I added SMP support. This patch makes sse kind of
dumb as it is saved and restored on every interrupt, but now it at least
works properly... I'll have to look into how sse can get optimized
nicely with SMP. Simple way would be pinning each thread to a specific
processor and doing pretty much what I had before, but sse thread saved
in processor rather than static global.
This allows signals to be called even if the process does no syscalls
The old scheduler did signal handling but I feel like it should be
enough to handle them only after syscalls and IRQs. ISRs already
handle signals that caused the ISR and there is no other route to
kernel space.
Current context saving was very hacky and dependant on compiler
behaviour that was not consistent. Now we always use iret for
context saving. This makes everything more clean.