Kernel: Rewrite the whole scheduler and re-architecture SMP handling

Change Semaphore -> ThreadBlocker
  This was not a semaphore, I just named it one because I didn't know
  what semaphore was. I have meant to change this sooner, but it was in
  no way urgent :D

Implement SMP events. Processors can now be sent SMP events through
IPIs. SMP events can be sent either to a single processor or broadcasted
to every processor.

PageTable::{map_page,map_range,unmap_page,unmap_range}() now send SMP
event to invalidate TLB caches for the changed pages.

Scheduler no longer uses a global run queue. Each processor has its own
scheduler that keeps track of the load on the processor. Once every
second schedulers do load balancing. Schedulers have no access to other
processors' schedulers, they just see approximate loads. If scheduler
decides that it has too much load, it will send a thread to another
processor through a SMP event.

Schedulers are currently run using the timer interrupt on BSB. This
should be not the case, and each processor should use its LAPIC timer
for interrupts. There is no reason to broadcast SMP event to all
processors when BSB gets timer interrupt.

Old scheduler only achieved 20% idle load on qemu. That was probably a
very inefficient implementation. This new scheduler seems to average
around 1% idle load. This is much closer to what I would expect. On my
own laptop idle load seems to be only around 0.5% on each processor.
This commit is contained in:
Bananymous 2024-07-22 00:33:50 +03:00
parent 9f90eeab05
commit f8261c60c0
60 changed files with 1559 additions and 715 deletions

View File

@ -71,7 +71,7 @@ set(KERNEL_SOURCES
kernel/Processor.cpp
kernel/Random.cpp
kernel/Scheduler.cpp
kernel/Semaphore.cpp
kernel/ThreadBlocker.cpp
kernel/SSP.cpp
kernel/Storage/ATA/AHCI/Controller.cpp
kernel/Storage/ATA/AHCI/Device.cpp

View File

@ -204,7 +204,7 @@ namespace Kernel
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = paddr | Flags::ReadWrite | Flags::Present;
invalidate(fast_page());
invalidate(fast_page(), false);
}
void PageTable::unmap_fast_page()
@ -224,7 +224,7 @@ namespace Kernel
ASSERT(pt[pte] & Flags::Present);
pt[pte] = 0;
invalidate(fast_page());
invalidate(fast_page(), false);
}
BAN::ErrorOr<PageTable*> PageTable::create_userspace()
@ -283,13 +283,24 @@ namespace Kernel
Processor::set_current_page_table(this);
}
void PageTable::invalidate(vaddr_t vaddr)
void PageTable::invalidate(vaddr_t vaddr, bool send_smp_message)
{
ASSERT(vaddr % PAGE_SIZE == 0);
asm volatile("invlpg (%0)" :: "r"(vaddr) : "memory");
if (send_smp_message)
{
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = 1
}
});
}
}
void PageTable::unmap_page(vaddr_t vaddr)
void PageTable::unmap_page(vaddr_t vaddr, bool send_smp_message)
{
ASSERT(vaddr);
ASSERT(vaddr % PAGE_SIZE == 0);
@ -306,30 +317,36 @@ namespace Kernel
SpinLockGuard _(m_lock);
if (is_page_free(vaddr))
{
dwarnln("unmapping unmapped page {8H}", vaddr);
return;
}
Kernel::panic("trying to unmap unmapped page 0x{H}", vaddr);
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
pt[pte] = 0;
invalidate(vaddr);
invalidate(vaddr, send_smp_message);
}
void PageTable::unmap_range(vaddr_t vaddr, size_t size)
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
ASSERT(vaddr % PAGE_SIZE == 0);
size_t page_count = range_page_count(vaddr, size);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
unmap_page(page * PAGE_SIZE);
for (vaddr_t page = 0; page < page_count; page++)
unmap_page(vaddr + page * PAGE_SIZE, false);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = page_count
}
});
}
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags, MemoryType memory_type)
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags, MemoryType memory_type, bool send_smp_message)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
@ -383,7 +400,7 @@ namespace Kernel
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
pt[pte] = paddr | uwr_flags | extra_flags;
invalidate(vaddr);
invalidate(vaddr, send_smp_message);
}
void PageTable::map_range_at(paddr_t paddr, vaddr_t vaddr, size_t size, flags_t flags, MemoryType memory_type)
@ -396,7 +413,15 @@ namespace Kernel
SpinLockGuard _(m_lock);
for (size_t page = 0; page < page_count; page++)
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags, memory_type);
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags, memory_type, false);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = page_count
}
});
}
uint64_t PageTable::get_page_data(vaddr_t vaddr) const

View File

@ -97,6 +97,22 @@ asm_yield_handler:
popal
iret
.global asm_ipi_handler
asm_ipi_handler:
push_userspace
load_kernel_segments
movl %esp, %ebp
subl $15, %esp
andl $0xFFFFFFF0, %esp
call cpp_ipi_handler
movl %ebp, %esp
pop_userspace
iret
.macro isr n
.global isr\n
isr\n:
@ -185,4 +201,3 @@ irq 28
irq 29
irq 30
irq 31
irq 32

View File

@ -78,7 +78,6 @@ namespace Kernel
ASSERT(s_kernel);
s_kernel->initialize_kernel();
s_kernel->initial_load();
}
void PageTable::initial_load()
@ -237,7 +236,7 @@ namespace Kernel
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = paddr | Flags::ReadWrite | Flags::Present;
invalidate(fast_page());
invalidate(fast_page(), false);
}
void PageTable::unmap_fast_page()
@ -260,7 +259,7 @@ namespace Kernel
ASSERT(pt[pte] & Flags::Present);
pt[pte] = 0;
invalidate(fast_page());
invalidate(fast_page(), false);
}
BAN::ErrorOr<PageTable*> PageTable::create_userspace()
@ -322,13 +321,24 @@ namespace Kernel
Processor::set_current_page_table(this);
}
void PageTable::invalidate(vaddr_t vaddr)
void PageTable::invalidate(vaddr_t vaddr, bool send_smp_message)
{
ASSERT(vaddr % PAGE_SIZE == 0);
asm volatile("invlpg (%0)" :: "r"(vaddr) : "memory");
if (send_smp_message)
{
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = 1
}
});
}
}
void PageTable::unmap_page(vaddr_t vaddr)
void PageTable::unmap_page(vaddr_t vaddr, bool send_smp_message)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
@ -350,10 +360,7 @@ namespace Kernel
SpinLockGuard _(m_lock);
if (is_page_free(vaddr))
{
dwarnln("unmapping unmapped page {8H}", vaddr);
return;
}
Kernel::panic("trying to unmap unmapped page 0x{H}", vaddr);
uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct);
uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK);
@ -361,20 +368,29 @@ namespace Kernel
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
pt[pte] = 0;
invalidate(vaddr);
invalidate(vaddr, send_smp_message);
}
void PageTable::unmap_range(vaddr_t vaddr, size_t size)
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
ASSERT(vaddr % PAGE_SIZE == 0);
size_t page_count = range_page_count(vaddr, size);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
unmap_page(page * PAGE_SIZE);
for (vaddr_t page = 0; page < page_count; page++)
unmap_page(vaddr + page * PAGE_SIZE, false);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = page_count
}
});
}
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags, MemoryType memory_type)
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags, MemoryType memory_type, bool send_smp_message)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
@ -441,7 +457,7 @@ namespace Kernel
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
pt[pte] = paddr | uwr_flags | extra_flags;
invalidate(vaddr);
invalidate(vaddr, send_smp_message);
}
void PageTable::map_range_at(paddr_t paddr, vaddr_t vaddr, size_t size, flags_t flags, MemoryType memory_type)
@ -456,7 +472,15 @@ namespace Kernel
SpinLockGuard _(m_lock);
for (size_t page = 0; page < page_count; page++)
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags, memory_type);
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags, memory_type, false);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = page_count
}
});
}
uint64_t PageTable::get_page_data(vaddr_t vaddr) const

View File

@ -70,6 +70,13 @@ asm_yield_handler:
popaq
iretq
.global asm_ipi_handler
asm_ipi_handler:
pushaq
call cpp_ipi_handler
popaq
iretq
.macro isr n
.global isr\n
isr\n:
@ -158,4 +165,3 @@ irq 28
irq 29
irq 30
irq 31
irq 32

View File

@ -5,6 +5,7 @@
#include <kernel/ACPI/AML/Namespace.h>
#include <kernel/ACPI/Headers.h>
#include <kernel/Memory/Types.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel::ACPI
{
@ -63,7 +64,7 @@ namespace Kernel::ACPI
FADT* m_fadt { nullptr };
Semaphore m_event_semaphore;
ThreadBlocker m_event_thread_blocker;
BAN::Array<BAN::RefPtr<AML::Method>, 0xFF> m_gpe_methods;
bool m_hardware_reduced { false };

View File

@ -120,7 +120,7 @@ namespace Kernel::ACPI::AML
{
if (SystemTimer::get().ms_since_boot() >= wake_time)
return ParseResult(Integer::Constants::Ones);
SystemTimer::get().sleep(1);
Processor::yield();
}
}

View File

@ -30,7 +30,7 @@ namespace Kernel::ACPI::AML
AML_DEBUG_PRINTLN("Sleeping for {} ms", sleep_time.value());
#endif
SystemTimer::get().sleep(sleep_time.value());
SystemTimer::get().sleep_ms(sleep_time.value());
return ParseResult::Success;
}
};

View File

@ -4,7 +4,7 @@
#include <kernel/Device/Device.h>
#include <kernel/FS/TmpFS/FileSystem.h>
#include <kernel/Lock/Mutex.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{
@ -34,8 +34,8 @@ namespace Kernel
BAN::Vector<BAN::RefPtr<Device>> m_devices;
Semaphore m_sync_done;
Semaphore m_sync_semaphore;
ThreadBlocker m_sync_done;
ThreadBlocker m_sync_thread_blocker;
volatile bool m_should_sync { false };
};

View File

@ -1,7 +1,7 @@
#pragma once
#include <kernel/FS/Inode.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{
@ -47,7 +47,7 @@ namespace Kernel
timespec m_mtime {};
timespec m_ctime {};
BAN::Vector<uint8_t> m_buffer;
Semaphore m_semaphore;
ThreadBlocker m_thread_blocker;
uint32_t m_writing_count { 1 };
};

View File

@ -8,8 +8,8 @@
#include <stdint.h>
constexpr uint8_t IRQ_VECTOR_BASE = 0x20;
constexpr uint8_t IRQ_IPI = 32;
constexpr uint8_t IRQ_YIELD = 33;
constexpr uint8_t IRQ_YIELD = 32;
constexpr uint8_t IRQ_IPI = 33;
namespace Kernel
{

View File

@ -3,6 +3,7 @@
#include <BAN/ByteSpan.h>
#include <kernel/Device/Device.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{
@ -42,7 +43,7 @@ namespace Kernel
const Type m_type;
mutable SpinLock m_event_lock;
Semaphore m_event_semaphore;
ThreadBlocker m_event_thread_blocker;
static constexpr size_t m_max_event_count { 128 };
@ -63,7 +64,7 @@ namespace Kernel
public:
static BAN::ErrorOr<BAN::RefPtr<KeyboardDevice>> create(mode_t mode, uid_t uid, gid_t gid);
void notify() { m_semaphore.unblock(); }
void notify() { m_thread_blocker.unblock(); }
private:
KeyboardDevice(mode_t mode, uid_t uid, gid_t gid);
@ -79,7 +80,7 @@ namespace Kernel
private:
const dev_t m_rdev;
const BAN::StringView m_name;
Semaphore m_semaphore;
ThreadBlocker m_thread_blocker;
friend class BAN::RefPtr<KeyboardDevice>;
};
@ -89,7 +90,7 @@ namespace Kernel
public:
static BAN::ErrorOr<BAN::RefPtr<MouseDevice>> create(mode_t mode, uid_t uid, gid_t gid);
void notify() { m_semaphore.unblock(); }
void notify() { m_thread_blocker.unblock(); }
private:
MouseDevice(mode_t mode, uid_t uid, gid_t gid);
@ -105,7 +106,7 @@ namespace Kernel
private:
const dev_t m_rdev;
const BAN::StringView m_name;
Semaphore m_semaphore;
ThreadBlocker m_thread_blocker;
friend class BAN::RefPtr<MouseDevice>;
};

View File

@ -1,5 +1,7 @@
#pragma once
#include <kernel/Arch.h>
#include <stdint.h>
namespace Kernel

View File

@ -2,7 +2,7 @@
#include <BAN/Atomic.h>
#include <BAN/NoCopyMove.h>
#include <kernel/Scheduler.h>
#include <kernel/Thread.h>
#include <sys/types.h>
@ -19,7 +19,7 @@ namespace Kernel
void lock()
{
auto tid = Scheduler::current_tid();
const auto tid = Thread::current_tid();
if (tid == m_locker)
ASSERT(m_lock_depth > 0);
else
@ -27,11 +27,11 @@ namespace Kernel
pid_t expected = -1;
while (!m_locker.compare_exchange(expected, tid))
{
Scheduler::get().yield();
Processor::yield();
expected = -1;
}
ASSERT(m_lock_depth == 0);
if (Scheduler::current_tid())
if (tid)
Thread::current().add_mutex();
}
m_lock_depth++;
@ -39,7 +39,7 @@ namespace Kernel
bool try_lock()
{
auto tid = Scheduler::current_tid();
const auto tid = Thread::current_tid();
if (tid == m_locker)
ASSERT(m_lock_depth > 0);
else
@ -48,7 +48,7 @@ namespace Kernel
if (!m_locker.compare_exchange(expected, tid))
return false;
ASSERT(m_lock_depth == 0);
if (Scheduler::current_tid())
if (tid)
Thread::current().add_mutex();
}
m_lock_depth++;
@ -57,12 +57,13 @@ namespace Kernel
void unlock()
{
ASSERT(m_locker == Scheduler::current_tid());
const auto tid = Thread::current_tid();
ASSERT(m_locker == tid);
ASSERT(m_lock_depth > 0);
if (--m_lock_depth == 0)
{
m_locker = -1;
if (Scheduler::current_tid())
if (tid)
Thread::current().remove_mutex();
}
}
@ -86,7 +87,7 @@ namespace Kernel
void lock()
{
auto tid = Scheduler::current_tid();
const auto tid = Thread::current_tid();
if (tid == m_locker)
ASSERT(m_lock_depth > 0);
else
@ -97,11 +98,11 @@ namespace Kernel
pid_t expected = -1;
while (!(has_priority || m_queue_length == 0) || !m_locker.compare_exchange(expected, tid))
{
Scheduler::get().yield();
Processor::yield();
expected = -1;
}
ASSERT(m_lock_depth == 0);
if (Scheduler::current_tid())
if (tid)
Thread::current().add_mutex();
}
m_lock_depth++;
@ -109,7 +110,7 @@ namespace Kernel
bool try_lock()
{
auto tid = Scheduler::current_tid();
const auto tid = Thread::current_tid();
if (tid == m_locker)
ASSERT(m_lock_depth > 0);
else
@ -121,7 +122,7 @@ namespace Kernel
if (has_priority)
m_queue_length++;
ASSERT(m_lock_depth == 0);
if (Scheduler::current_tid())
if (tid)
Thread::current().add_mutex();
}
m_lock_depth++;
@ -130,7 +131,7 @@ namespace Kernel
void unlock()
{
auto tid = Scheduler::current_tid();
const auto tid = Thread::current_tid();
ASSERT(m_locker == tid);
ASSERT(m_lock_depth > 0);
if (--m_lock_depth == 0)
@ -139,7 +140,7 @@ namespace Kernel
if (has_priority)
m_queue_length--;
m_locker = -1;
if (Scheduler::current_tid())
if (tid)
Thread::current().remove_mutex();
}
}

View File

@ -23,34 +23,45 @@ namespace Kernel
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
auto id = Processor::current_id();
ASSERT(m_locker != id);
auto id = Processor::current_id().as_u32();
ASSERT(m_locker.load(BAN::MemoryOrder::memory_order_relaxed) != id);
ProcessorID expected = PROCESSOR_NONE;
auto expected = PROCESSOR_NONE.as_u32();
while (!m_locker.compare_exchange(expected, id, BAN::MemoryOrder::memory_order_acquire))
{
__builtin_ia32_pause();
expected = PROCESSOR_NONE;
Processor::pause();
expected = PROCESSOR_NONE.as_u32();
}
return state;
}
bool try_lock_interrupts_disabled()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
auto id = Processor::current_id().as_u32();
ASSERT(m_locker.load(BAN::MemoryOrder::memory_order_relaxed) != id);
auto expected = PROCESSOR_NONE.as_u32();
return m_locker.compare_exchange(expected, id, BAN::MemoryOrder::memory_order_acquire);
}
void unlock(InterruptState state)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
ASSERT(m_locker == Processor::current_id());
m_locker.store(PROCESSOR_NONE, BAN::MemoryOrder::memory_order_release);
ASSERT(current_processor_has_lock());
m_locker.store(PROCESSOR_NONE.as_u32(), BAN::MemoryOrder::memory_order_release);
Processor::set_interrupt_state(state);
}
bool current_processor_has_lock() const
{
return m_locker == Processor::current_id();
return m_locker.load(BAN::MemoryOrder::memory_order_relaxed) == Processor::current_id().as_u32();
}
private:
BAN::Atomic<ProcessorID> m_locker { PROCESSOR_NONE };
BAN::Atomic<ProcessorID::value_type> m_locker { PROCESSOR_NONE.as_u32() };
};
class RecursiveSpinLock
@ -66,18 +77,15 @@ namespace Kernel
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
auto id = Processor::current_id();
if (m_locker == id)
ASSERT(m_lock_depth > 0);
else
auto id = Processor::current_id().as_u32();
ProcessorID::value_type expected = PROCESSOR_NONE.as_u32();
while (!m_locker.compare_exchange(expected, id, BAN::MemoryOrder::memory_order_acq_rel))
{
ProcessorID expected = PROCESSOR_NONE;
while (!m_locker.compare_exchange(expected, id, BAN::MemoryOrder::memory_order_acquire))
{
__builtin_ia32_pause();
expected = PROCESSOR_NONE;
}
ASSERT(m_lock_depth == 0);
if (expected == id)
break;
Processor::pause();
expected = PROCESSOR_NONE.as_u32();
}
m_lock_depth++;
@ -88,21 +96,21 @@ namespace Kernel
void unlock(InterruptState state)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
ASSERT(m_locker == Processor::current_id());
ASSERT(current_processor_has_lock());
ASSERT(m_lock_depth > 0);
if (--m_lock_depth == 0)
m_locker.store(PROCESSOR_NONE, BAN::MemoryOrder::memory_order_release);
m_locker.store(PROCESSOR_NONE.as_u32(), BAN::MemoryOrder::memory_order_release);
Processor::set_interrupt_state(state);
}
bool current_processor_has_lock() const
{
return m_locker == Processor::current_id();
return m_locker.load(BAN::MemoryOrder::memory_order_relaxed) == Processor::current_id().as_u32();
}
private:
BAN::Atomic<ProcessorID> m_locker { PROCESSOR_NONE };
uint32_t m_lock_depth { 0 };
BAN::Atomic<ProcessorID::value_type> m_locker { PROCESSOR_NONE.as_u32() };
uint32_t m_lock_depth { 0 };
};
template<typename Lock>

View File

@ -95,11 +95,11 @@ namespace Kernel
static BAN::ErrorOr<PageTable*> create_userspace();
~PageTable();
void unmap_page(vaddr_t);
void unmap_page(vaddr_t, bool send_smp_message = true);
void unmap_range(vaddr_t, size_t bytes);
void map_page_at(paddr_t, vaddr_t, flags_t, MemoryType = MemoryType::Normal, bool send_smp_message = true);
void map_range_at(paddr_t, vaddr_t, size_t bytes, flags_t, MemoryType = MemoryType::Normal);
void map_page_at(paddr_t, vaddr_t, flags_t, MemoryType = MemoryType::Normal);
paddr_t physical_address_of(vaddr_t) const;
flags_t get_page_flags(vaddr_t) const;
@ -127,7 +127,8 @@ namespace Kernel
void initialize_kernel();
void map_kernel_memory();
void prepare_fast_page();
static void invalidate(vaddr_t);
static void invalidate(vaddr_t, bool send_smp_message);
static void map_fast_page(paddr_t);
static void unmap_fast_page();

View File

@ -5,7 +5,7 @@
#include <BAN/UniqPtr.h>
#include <kernel/Networking/NetworkInterface.h>
#include <kernel/Process.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{
@ -58,7 +58,7 @@ namespace Kernel
Process* m_process = nullptr;
BAN::CircularQueue<PendingArpPacket, 128> m_pending_packets;
Semaphore m_pending_semaphore;
ThreadBlocker m_pending_thread_blocker;
friend class BAN::UniqPtr<ARPTable>;
};

View File

@ -77,7 +77,7 @@ namespace Kernel
static constexpr size_t pending_packet_buffer_size = 128 * PAGE_SIZE;
BAN::UniqPtr<VirtualRange> m_pending_packet_buffer;
BAN::CircularQueue<PendingIPv4Packet, 128> m_pending_packets;
Semaphore m_pending_semaphore;
ThreadBlocker m_pending_thread_blocker;
SpinLock m_pending_lock;
size_t m_pending_total_size { 0 };

View File

@ -7,7 +7,7 @@
#include <kernel/Networking/NetworkInterface.h>
#include <kernel/Networking/NetworkSocket.h>
#include <kernel/Process.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{
@ -161,7 +161,7 @@ namespace Kernel
uint64_t m_time_wait_start_ms { 0 };
Semaphore m_semaphore;
ThreadBlocker m_thread_blocker;
RecvWindowInfo m_recv_window;
SendWindowInfo m_send_window;

View File

@ -6,7 +6,7 @@
#include <kernel/Memory/VirtualRange.h>
#include <kernel/Networking/NetworkInterface.h>
#include <kernel/Networking/NetworkSocket.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{
@ -57,7 +57,7 @@ namespace Kernel
BAN::CircularQueue<PacketInfo, 32> m_packets;
size_t m_packet_total_size { 0 };
SpinLock m_packet_lock;
Semaphore m_packet_semaphore;
ThreadBlocker m_packet_thread_blocker;
friend class BAN::RefPtr<UDPSocket>;
};

View File

@ -48,7 +48,7 @@ namespace Kernel
mutable BAN::Atomic<bool> target_closed { false };
BAN::WeakPtr<UnixDomainSocket> connection;
BAN::Queue<BAN::RefPtr<UnixDomainSocket>> pending_connections;
Semaphore pending_semaphore;
ThreadBlocker pending_thread_blocker;
SpinLock pending_lock;
};
@ -67,7 +67,7 @@ namespace Kernel
size_t m_packet_size_total { 0 };
BAN::UniqPtr<VirtualRange> m_packet_buffer;
SpinLock m_packet_lock;
Semaphore m_packet_semaphore;
ThreadBlocker m_packet_thread_blocker;
friend class BAN::RefPtr<UnixDomainSocket>;
};

View File

@ -251,7 +251,7 @@ namespace Kernel
private:
struct ExitStatus
{
Semaphore semaphore;
ThreadBlocker thread_blocker;
int exit_code { 0 };
BAN::Atomic<bool> exited { false };
BAN::Atomic<int> waiting { 0 };

View File

@ -1,12 +1,14 @@
#pragma once
#include <BAN/Atomic.h>
#include <BAN/Formatter.h>
#include <BAN/ForwardList.h>
#include <kernel/Arch.h>
#include <kernel/GDT.h>
#include <kernel/IDT.h>
#include <kernel/InterruptStack.h>
#include <kernel/SchedulerQueue.h>
#include <kernel/Scheduler.h>
namespace Kernel
{
@ -17,8 +19,28 @@ namespace Kernel
Enabled,
};
using ProcessorID = uint32_t;
constexpr ProcessorID PROCESSOR_NONE = 0xFFFFFFFF;
class ProcessorID
{
public:
using value_type = uint32_t;
public:
ProcessorID() = default;
uint32_t as_u32() const { return m_id; }
bool operator==(ProcessorID other) const { return m_id == other.m_id; }
private:
explicit ProcessorID(uint32_t id) : m_id(id) {}
private:
uint32_t m_id = static_cast<uint32_t>(-1);
friend class Processor;
friend class APIC;
};
constexpr ProcessorID PROCESSOR_NONE { };
#if ARCH(x86_64) || ARCH(i686)
class Processor
@ -26,12 +48,44 @@ namespace Kernel
BAN_NON_COPYABLE(Processor);
BAN_NON_MOVABLE(Processor);
public:
struct SMPMessage
{
enum class Type
{
FlushTLB,
NewThread,
UnblockThread,
// FIXME: all processors should LAPIC for their preemption
SchedulerPreemption,
};
SMPMessage* next { nullptr };
Type type;
union
{
struct
{
uintptr_t vaddr;
size_t page_count;
} flush_tlb;
Scheduler::NewThreadRequest new_thread;
Scheduler::UnblockRequest unblock_thread;
uintptr_t scheduler_preemption;
};
};
public:
static Processor& create(ProcessorID id);
static Processor& initialize();
static void allocate_idle_thread();
static ProcessorID current_id() { return read_gs_sized<ProcessorID>(offsetof(Processor, m_id)); }
static ProcessorID id_from_index(size_t index);
static uint8_t count() { return s_processor_count; }
static bool is_smp_enabled() { return s_is_smp_enabled; }
static void wait_until_processors_ready();
static void toggle_should_print_cpu_load() { s_should_print_cpu_load = !s_should_print_cpu_load; }
static ProcessorID bsb_id() { return s_bsb_id; }
static bool current_is_bsb() { return current_id() == bsb_id(); }
@ -53,31 +107,40 @@ namespace Kernel
return InterruptState::Disabled;
};
static uintptr_t current_stack_bottom() { return reinterpret_cast<uintptr_t>(read_gs_ptr(offsetof(Processor, m_stack))); }
static void pause()
{
__builtin_ia32_pause();
if (is_smp_enabled())
handle_smp_messages();
}
static uintptr_t current_stack_bottom() { return read_gs_sized<uintptr_t>(offsetof(Processor, m_stack)); }
static uintptr_t current_stack_top() { return current_stack_bottom() + s_stack_size; }
uintptr_t stack_bottom() const { return reinterpret_cast<uintptr_t>(m_stack); }
uintptr_t stack_top() const { return stack_bottom() + s_stack_size; }
static GDT& gdt() { return *reinterpret_cast<GDT*>(read_gs_ptr(offsetof(Processor, m_gdt))); }
static IDT& idt() { return *reinterpret_cast<IDT*>(read_gs_ptr(offsetof(Processor, m_idt))); }
static GDT& gdt() { return *read_gs_sized<GDT*>(offsetof(Processor, m_gdt)); }
static IDT& idt() { return *read_gs_sized<IDT*>(offsetof(Processor, m_idt)); }
static void* get_current_page_table() { return read_gs_ptr(offsetof(Processor, m_current_page_table)); }
static void set_current_page_table(void* page_table) { write_gs_ptr(offsetof(Processor, m_current_page_table), page_table); }
static void* get_current_page_table() { return read_gs_sized<void*>(offsetof(Processor, m_current_page_table)); }
static void set_current_page_table(void* page_table) { write_gs_sized<void*>(offsetof(Processor, m_current_page_table), page_table); }
static Thread* idle_thread() { return reinterpret_cast<Thread*>(read_gs_ptr(offsetof(Processor, m_idle_thread))); }
static SchedulerQueue::Node* get_current_thread() { return reinterpret_cast<SchedulerQueue::Node*>(read_gs_ptr(offsetof(Processor, m_current_thread))); }
static void set_current_thread(SchedulerQueue::Node* thread) { write_gs_ptr(offsetof(Processor, m_current_thread), thread); }
static void yield();
static Scheduler& scheduler() { return *read_gs_sized<Scheduler*>(offsetof(Processor, m_scheduler)); }
static void enter_interrupt(InterruptStack*, InterruptRegisters*);
static void leave_interrupt();
static InterruptStack& get_interrupt_stack();
static InterruptRegisters& get_interrupt_registers();
static void handle_ipi();
static void handle_smp_messages();
static void send_smp_message(ProcessorID, const SMPMessage&, bool send_ipi = true);
static void broadcast_smp_message(const SMPMessage&);
private:
Processor() = default;
~Processor() { ASSERT_NOT_REACHED(); }
static ProcessorID read_processor_id();
template<typename T>
static T read_gs_sized(uintptr_t offset) requires(sizeof(T) <= 8)
{
@ -110,11 +173,10 @@ namespace Kernel
#undef __ASM_INPUT
}
static void* read_gs_ptr(uintptr_t offset) { return read_gs_sized<void*>(offset); }
static void write_gs_ptr(uintptr_t offset, void* value) { write_gs_sized<void*>(offset, value); }
private:
static ProcessorID s_bsb_id;
static BAN::Atomic<uint8_t> s_processor_count;
static BAN::Atomic<bool> s_is_smp_enabled;
ProcessorID m_id { PROCESSOR_NONE };
@ -124,11 +186,15 @@ namespace Kernel
GDT* m_gdt { nullptr };
IDT* m_idt { nullptr };
Thread* m_idle_thread { nullptr };
SchedulerQueue::Node* m_current_thread { nullptr };
Scheduler* m_scheduler { nullptr };
InterruptStack* m_interrupt_stack { nullptr };
InterruptRegisters* m_interrupt_registers { nullptr };
BAN::Atomic<bool> m_smp_pending_lock { false };
SMPMessage* m_smp_pending { nullptr };
BAN::Atomic<bool> m_smp_free_lock { false };
SMPMessage* m_smp_free { nullptr };
SMPMessage* m_smp_message_storage;
void* m_current_page_table { nullptr };
@ -139,3 +205,14 @@ namespace Kernel
#endif
}
namespace BAN::Formatter
{
template<typename F>
void print_argument(F putc, Kernel::ProcessorID processor_id, const ValueFormat& format)
{
print_argument(putc, processor_id.as_u32(), format);
}
}

View File

@ -1,55 +1,149 @@
#pragma once
#include <kernel/SchedulerQueue.h>
#include <kernel/Semaphore.h>
#include <kernel/Thread.h>
#include <BAN/Array.h>
#include <BAN/ForwardList.h>
#include <BAN/NoCopyMove.h>
#include <kernel/InterruptStack.h>
#include <sys/types.h>
namespace Kernel
{
class Scheduler
class Thread;
class ThreadBlocker;
class SchedulerQueue
{
public:
static BAN::ErrorOr<void> initialize();
static Scheduler& get();
struct Node
{
Node(Thread* thread)
: thread(thread)
{}
[[noreturn]] void start();
Node* next { nullptr };
Node* prev { nullptr };
void yield();
Thread* thread;
ThreadBlocker* blocker { nullptr };
uint64_t wake_time_ns { static_cast<uint64_t>(-1) };
void timer_reschedule();
void irq_reschedule();
void reschedule_if_idling();
uint64_t last_start_ns { 0 };
uint64_t time_used_ns { 0 };
};
void set_current_thread_sleeping(uint64_t wake_time);
public:
void add_thread_to_back(Node*);
void add_thread_with_wake_time(Node*);
template<typename F>
Node* remove_with_condition(F callback);
void remove_node(Node*);
Node* front();
Node* pop_front();
void block_current_thread(Semaphore*, uint64_t wake_time);
void unblock_threads(Semaphore*);
// Makes sleeping or blocked thread with tid active.
bool empty() const { return m_head == nullptr; }
private:
Node* m_head { nullptr };
Node* m_tail { nullptr };
};
class Scheduler
{
BAN_NON_COPYABLE(Scheduler);
BAN_NON_MOVABLE(Scheduler);
public:
struct NewThreadRequest
{
SchedulerQueue::Node* node;
bool blocked;
};
struct UnblockRequest
{
enum class Type
{
ThreadBlocker,
ThreadID,
};
Type type;
union
{
ThreadBlocker* blocker;
pid_t tid;
};
};
public:
static BAN::ErrorOr<Scheduler*> create();
BAN::ErrorOr<void> initialize();
void reschedule(InterruptStack*, InterruptRegisters*);
void reschedule_if_idle();
void timer_interrupt();
BAN::ErrorOr<void> add_thread(Thread*);
void block_current_thread(ThreadBlocker* thread_blocker, uint64_t wake_time_ns);
void unblock_threads(ThreadBlocker*);
void unblock_thread(pid_t tid);
Thread& current_thread();
static pid_t current_tid();
Thread& idle_thread();
// This is no return if called on current thread
void terminate_thread(Thread*);
pid_t current_tid() const;
bool is_idle() const;
private:
Scheduler() = default;
void set_current_thread_sleeping_impl(Semaphore* semaphore, uint64_t wake_time);
void add_current_to_most_loaded(SchedulerQueue* target_queue);
void update_most_loaded_node_queue(SchedulerQueue::Node*, SchedulerQueue* target_queue);
void remove_node_from_most_loaded(SchedulerQueue::Node*);
void setup_next_thread();
bool do_unblock(ThreadBlocker*);
bool do_unblock(pid_t);
void do_load_balancing();
BAN::ErrorOr<void> add_thread(Thread*);
class ProcessorID find_least_loaded_processor() const;
void preempt();
void handle_unblock_request(const UnblockRequest&);
void handle_new_thread_request(const NewThreadRequest&);
private:
SpinLock m_lock;
SchedulerQueue m_run_queue;
SchedulerQueue m_block_queue;
SchedulerQueue::Node* m_current { nullptr };
bool m_current_will_block { false };
SchedulerQueue m_active_threads;
SchedulerQueue m_blocking_threads;
uint32_t m_thread_count { 0 };
friend class Process;
InterruptStack* m_interrupt_stack { nullptr };
InterruptRegisters* m_interrupt_registers { nullptr };
uint64_t m_last_reschedule_ns { 0 };
uint64_t m_last_load_balance_ns { 0 };
struct ThreadInfo
{
SchedulerQueue* queue { nullptr };
SchedulerQueue::Node* node { nullptr };
};
BAN::Array<ThreadInfo, 10> m_most_loaded_threads;
uint64_t m_idle_start_ns { 0 };
uint64_t m_idle_ns { 0 };
bool m_should_calculate_max_load_threads { true };
Thread* m_idle_thread { nullptr };
friend class Processor;
};
}

View File

@ -1,127 +0,0 @@
#pragma once
#include <BAN/Assert.h>
#include <BAN/NoCopyMove.h>
#include <stdint.h>
namespace Kernel
{
class Thread;
class Semaphore;
class SchedulerQueue
{
BAN_NON_COPYABLE(SchedulerQueue);
BAN_NON_MOVABLE(SchedulerQueue);
public:
struct Node
{
Node(Thread* thread)
: thread(thread)
{}
Thread* thread;
uint64_t wake_time { 0 };
Semaphore* semaphore { nullptr };
bool should_block { false };
private:
Node* next { nullptr };
friend class SchedulerQueue;
friend class Scheduler;
};
public:
SchedulerQueue() = default;
~SchedulerQueue() { ASSERT_NOT_REACHED(); }
bool empty() const { return m_front == nullptr; }
Node* pop_front()
{
ASSERT(!empty());
Node* node = m_front;
m_front = m_front->next;
if (m_front == nullptr)
m_back = nullptr;
node->next = nullptr;
return node;
}
void push_back(Node* node)
{
ASSERT(node);
node->next = nullptr;
(empty() ? m_front : m_back->next) = node;
m_back = node;
}
void add_with_wake_time(Node* node)
{
ASSERT(node);
node->next = nullptr;
if (empty() || node->wake_time >= m_back->wake_time)
{
push_back(node);
return;
}
if (node->wake_time < m_front->wake_time)
{
node->next = m_front;
m_front = node;
return;
}
Node* prev = m_front;
for (; node->wake_time >= prev->next->wake_time; prev = prev->next)
continue;
node->next = prev->next;
prev->next = node;
}
void remove_with_wake_time(SchedulerQueue& out, uint64_t current_time)
{
while (!empty() && m_front->wake_time <= current_time)
out.push_back(pop_front());
}
template<typename F>
void remove_with_condition(SchedulerQueue& out, F comp)
{
while (!empty() && comp(m_front))
out.push_back(pop_front());
if (empty())
return;
for (Node* prev = m_front; prev->next;)
{
Node* node = prev->next;
if (!comp(node))
prev = prev->next;
else
{
prev->next = node->next;
if (node == m_back)
m_back = prev;
out.push_back(node);
}
}
}
private:
Node* m_front { nullptr };
Node* m_back { nullptr };
};
}

View File

@ -1,15 +0,0 @@
#pragma once
namespace Kernel
{
class Semaphore
{
public:
void block_indefinite();
void block_with_timeout(uint64_t timeout_ms);
void block_with_wake_time(uint64_t wake_time_ms);
void unblock();
};
}

View File

@ -1,6 +1,6 @@
#pragma once
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
#include <kernel/Storage/ATA/AHCI/Definitions.h>
#include <kernel/Storage/ATA/ATADevice.h>

View File

@ -4,7 +4,7 @@
#include <BAN/Vector.h>
#include <kernel/Interruptable.h>
#include <kernel/Memory/DMARegion.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
#include <kernel/Storage/NVMe/Definitions.h>
namespace Kernel
@ -31,7 +31,7 @@ namespace Kernel
uint32_t m_cq_head { 0 };
uint16_t m_cq_valid_phase { 1 };
Semaphore m_semaphore;
ThreadBlocker m_thread_blocker;
SpinLock m_lock;
BAN::Atomic<size_t> m_used_mask { 0 };
BAN::Atomic<size_t> m_done_mask { 0 };

View File

@ -5,7 +5,7 @@
#include <kernel/Lock/SpinLock.h>
#include <kernel/Terminal/TerminalDriver.h>
#include <kernel/Terminal/termios.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
#include <LibInput/KeyEvent.h>
namespace Kernel
@ -74,7 +74,7 @@ namespace Kernel
{
bool draw_graphics { true };
bool receive_input { true };
Semaphore semaphore;
ThreadBlocker thread_blocker;
};
tty_ctrl_t m_tty_ctrl;
@ -83,7 +83,7 @@ namespace Kernel
BAN::Array<uint8_t, 1024> buffer;
size_t bytes { 0 };
bool flush { false };
Semaphore semaphore;
ThreadBlocker thread_blocker;
};
Buffer m_output;

View File

@ -5,7 +5,7 @@
#include <kernel/Terminal/TerminalDriver.h>
#include <kernel/Terminal/termios.h>
#include <kernel/Terminal/TTY.h>
#include <kernel/Semaphore.h>
#include <kernel/ThreadBlocker.h>
namespace Kernel
{

View File

@ -47,10 +47,12 @@ namespace Kernel
void handle_signal(int signal = 0);
bool add_signal(int signal);
// blocks semaphore and returns either on unblock, eintr, spuriously or after timeout
BAN::ErrorOr<void> block_or_eintr_indefinite(Semaphore& semaphore);
BAN::ErrorOr<void> block_or_eintr_or_timeout(Semaphore& semaphore, uint64_t timeout_ms, bool etimedout);
BAN::ErrorOr<void> block_or_eintr_or_waketime(Semaphore& semaphore, uint64_t wake_time_ms, bool etimedout);
// blocks current thread and returns either on unblock, eintr, spuriously or after timeout
BAN::ErrorOr<void> block_or_eintr_indefinite(ThreadBlocker& thread_blocker);
BAN::ErrorOr<void> block_or_eintr_or_timeout_ms(ThreadBlocker& thread_blocker, uint64_t timeout_ms, bool etimedout) { return block_or_eintr_or_timeout_ns(thread_blocker, timeout_ms * 1'000'000, etimedout); }
BAN::ErrorOr<void> block_or_eintr_or_waketime_ms(ThreadBlocker& thread_blocker, uint64_t wake_time_ms, bool etimedout) { return block_or_eintr_or_waketime_ns(thread_blocker, wake_time_ms * 1'000'000, etimedout); }
BAN::ErrorOr<void> block_or_eintr_or_timeout_ns(ThreadBlocker& thread_blocker, uint64_t timeout_ns, bool etimedout);
BAN::ErrorOr<void> block_or_eintr_or_waketime_ns(ThreadBlocker& thread_blocker, uint64_t wake_time_ns, bool etimedout);
pid_t tid() const { return m_tid; }

View File

@ -0,0 +1,17 @@
#pragma once
namespace Kernel
{
class ThreadBlocker
{
public:
void block_indefinite();
void block_with_timeout_ms(uint64_t timeout_ms) { return block_with_timeout_ns(timeout_ms * 1'000'000); }
void block_with_wake_time_ms(uint64_t wake_time_ms) { return block_with_wake_time_ns(wake_time_ms * 1'000'000); }
void block_with_timeout_ns(uint64_t timeout_ns);
void block_with_wake_time_ns(uint64_t wake_time_ns);
void unblock();
};
}

View File

@ -29,7 +29,8 @@ namespace Kernel
virtual uint64_t ns_since_boot() const override;
virtual timespec time_since_boot() const override;
void sleep(uint64_t ms) const;
void sleep_ms(uint64_t ms) const { return sleep_ns(ms * 1'000'000); }
void sleep_ns(uint64_t ns) const;
timespec real_time() const;

View File

@ -4,6 +4,7 @@
#include <kernel/Lock/Mutex.h>
#include <kernel/Memory/DMARegion.h>
#include <kernel/ThreadBlocker.h>
#include <kernel/USB/USBManager.h>
#include <kernel/USB/XHCI/Definitions.h>
@ -79,7 +80,7 @@ namespace Kernel
Mutex m_mutex;
Process* m_port_updater { nullptr };
Semaphore m_port_semaphore;
ThreadBlocker m_port_thread_blocker;
BAN::Atomic<bool> m_port_changed { false };
PCI::Device& m_pci_device;

View File

@ -602,7 +602,7 @@ acpi_release_global_lock:
{
if (IO::inw(fadt().pm1a_cnt_blk) & PM1_CNT_SCI_EN)
break;
SystemTimer::get().sleep(10);
SystemTimer::get().sleep_ms(10);
}
if (!(IO::inw(fadt().pm1a_cnt_blk) & PM1_CNT_SCI_EN))
@ -761,7 +761,7 @@ acpi_release_global_lock:
// FIXME: this can cause missing of event if it happens between
// reading the status and blocking
m_event_semaphore.block_with_timeout(100);
m_event_thread_blocker.block_with_timeout_ms(100);
continue;
handle_event:
@ -782,7 +782,7 @@ handle_event:
void ACPI::handle_irq()
{
m_event_semaphore.unblock();
m_event_thread_blocker.unblock();
}
}

View File

@ -244,7 +244,7 @@ namespace Kernel
dprintln("System has {} processors", m_processors.size());
uint8_t bsp_id = Kernel::Processor::current_id();
uint8_t bsp_id = Kernel::Processor::current_id().as_u32();
dprintln("BSP lapic id: {}", bsp_id);
if (m_processors.size() == 1)
@ -267,7 +267,7 @@ namespace Kernel
dprintln("Trying to enable processor (lapic id {})", processor.apic_id);
auto& proc = Kernel::Processor::create(processor.apic_id);
auto& proc = Kernel::Processor::create(ProcessorID(processor.apic_id));
PageTable::with_fast_page((paddr_t)g_ap_init_addr, [&] {
PageTable::fast_page_as_sized<uint32_t>(2) = V2P(proc.stack_top());
});
@ -308,14 +308,24 @@ namespace Kernel
}
// give processor upto 100 * 100 us + 200 us to boot
for (int i = 0; *g_ap_stack_loaded == 0 && i < 100; i++)
for (int i = 0; i < 100; i++)
{
if (__atomic_load_n(&g_ap_stack_loaded[0], __ATOMIC_SEQ_CST))
break;
udelay(100);
}
}
*g_ap_startup_done = 1;
__atomic_store_n(&g_ap_startup_done[0], 1, __ATOMIC_SEQ_CST);
const size_t timeout_ms = SystemTimer::get().ms_since_boot() + 500;
while (__atomic_load_n(&g_ap_running_count[0], __ATOMIC_SEQ_CST) < m_processors.size() - 1)
{
if (SystemTimer::get().ms_since_boot() >= timeout_ms)
Kernel::panic("Could not start all processors");
__builtin_ia32_pause();
}
// give processors 100 us time to increment running count
udelay(100);
dprintln("{} processors started", *g_ap_running_count);
}
@ -325,7 +335,7 @@ namespace Kernel
ASSERT(Kernel::Processor::get_interrupt_state() == InterruptState::Disabled);
while ((read_from_local_apic(LAPIC_ICR_LO_REG) & ICR_LO_delivery_status_send_pending) == ICR_LO_delivery_status_send_pending)
__builtin_ia32_pause();
write_to_local_apic(LAPIC_ICR_HI_REG, (read_from_local_apic(LAPIC_ICR_HI_REG) & 0x00FFFFFF) | (target << 24));
write_to_local_apic(LAPIC_ICR_HI_REG, (read_from_local_apic(LAPIC_ICR_HI_REG) & 0x00FFFFFF) | (target.as_u32() << 24));
write_to_local_apic(LAPIC_ICR_LO_REG,
(read_from_local_apic(LAPIC_ICR_LO_REG) & ICR_LO_reserved_mask)
| ICR_LO_delivery_mode_fixed
@ -359,7 +369,6 @@ namespace Kernel
write_to_local_apic(LAPIC_SIV_REG, read_from_local_apic(LAPIC_SIV_REG) | 0x1FF);
}
uint32_t APIC::read_from_local_apic(ptrdiff_t offset)
{
return MMIO::read32(m_local_apic_vaddr + offset);
@ -418,7 +427,7 @@ namespace Kernel
redir.vector = IRQ_VECTOR_BASE + irq;
redir.mask = 0;
// FIXME: distribute IRQs more evenly?
redir.destination = Kernel::Processor::bsb_id();
redir.destination = Kernel::Processor::bsb_id().as_u32();
ioapic->write(IOAPIC_REDIRS + gsi * 2, redir.lo_dword);
ioapic->write(IOAPIC_REDIRS + gsi * 2 + 1, redir.hi_dword);

View File

@ -49,7 +49,7 @@ namespace Kernel
for (auto& device : s_instance->m_devices)
device->update();
}
SystemTimer::get().sleep(10);
SystemTimer::get().sleep_ms(10);
}
}, nullptr
);
@ -65,7 +65,7 @@ namespace Kernel
while (!s_instance->m_should_sync)
{
LockFreeGuard _(s_instance->m_device_lock);
s_instance->m_sync_semaphore.block_indefinite();
s_instance->m_sync_thread_blocker.block_indefinite();
}
for (auto& device : s_instance->m_devices)
@ -84,11 +84,11 @@ namespace Kernel
{
while (true)
{
SystemTimer::get().sleep(10000);
SystemTimer::get().sleep_ms(10'000);
LockGuard _(s_instance->m_device_lock);
s_instance->m_should_sync = true;
s_instance->m_sync_semaphore.unblock();
s_instance->m_sync_thread_blocker.unblock();
}
}, nullptr, sync_process
)));
@ -101,7 +101,7 @@ namespace Kernel
{
LockGuard _(m_device_lock);
m_should_sync = true;
m_sync_semaphore.unblock();
m_sync_thread_blocker.unblock();
}
if (should_block)
m_sync_done.block_indefinite();

View File

@ -37,7 +37,7 @@ namespace Kernel
ASSERT(m_writing_count > 0);
m_writing_count--;
if (m_writing_count == 0)
m_semaphore.unblock();
m_thread_blocker.unblock();
}
BAN::ErrorOr<size_t> Pipe::read_impl(off_t, BAN::ByteSpan buffer)
@ -48,7 +48,7 @@ namespace Kernel
if (m_writing_count == 0)
return 0;
LockFreeGuard lock_free(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
size_t to_copy = BAN::Math::min<size_t>(buffer.size(), m_buffer.size());
@ -59,7 +59,7 @@ namespace Kernel
m_atime = SystemTimer::get().real_time();
m_semaphore.unblock();
m_thread_blocker.unblock();
return to_copy;
}
@ -77,7 +77,7 @@ namespace Kernel
m_mtime = current_time;
m_ctime = current_time;
m_semaphore.unblock();
m_thread_blocker.unblock();
return buffer.size();
}

View File

@ -10,7 +10,7 @@
#include <kernel/Timer/PIT.h>
#define ISR_LIST_X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(18) X(19) X(20) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(28) X(29) X(30) X(31)
#define IRQ_LIST_X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(18) X(19) X(20) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(28) X(29) X(30) X(31) X(32)
#define IRQ_LIST_X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(18) X(19) X(20) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(28) X(29) X(30) X(31)
namespace Kernel
{
@ -168,8 +168,8 @@ namespace Kernel
asm volatile("cli; 1: hlt; jmp 1b");
}
pid_t tid = Scheduler::current_tid();
pid_t pid = tid ? Process::current().pid() : 0;
const pid_t tid = Thread::current_tid();
const pid_t pid = (tid && Thread::current().has_process()) ? Process::current().pid() : 0;
if (tid)
{
@ -241,13 +241,13 @@ namespace Kernel
#if ARCH(x86_64)
dwarnln(
"{} (error code: 0x{8H}), pid {}, tid {}\r\n"
"CPU {}: {} (error code: 0x{8H}), pid {}, tid {}\r\n"
"Register dump\r\n"
"rax=0x{16H}, rbx=0x{16H}, rcx=0x{16H}, rdx=0x{16H}\r\n"
"rsp=0x{16H}, rbp=0x{16H}, rdi=0x{16H}, rsi=0x{16H}\r\n"
"rip=0x{16H}, rflags=0x{16H}\r\n"
"cr0=0x{16H}, cr2=0x{16H}, cr3=0x{16H}, cr4=0x{16H}",
isr_exceptions[isr], error, pid, tid,
Processor::current_id(), isr_exceptions[isr], error, pid, tid,
regs->rax, regs->rbx, regs->rcx, regs->rdx,
interrupt_stack->sp, regs->rbp, regs->rdi, regs->rsi,
interrupt_stack->ip, interrupt_stack->flags,
@ -255,13 +255,13 @@ namespace Kernel
);
#elif ARCH(i686)
dwarnln(
"{} (error code: 0x{8H}), pid {}, tid {}\r\n"
"CPU {}: {} (error code: 0x{8H}), pid {}, tid {}\r\n"
"Register dump\r\n"
"eax=0x{8H}, ebx=0x{8H}, ecx=0x{8H}, edx=0x{8H}\r\n"
"esp=0x{8H}, ebp=0x{8H}, edi=0x{8H}, esi=0x{8H}\r\n"
"eip=0x{8H}, eflags=0x{8H}\r\n"
"cr0=0x{8H}, cr2=0x{8H}, cr3=0x{8H}, cr4=0x{8H}",
isr_exceptions[isr], error, pid, tid,
Processor::current_id(), isr_exceptions[isr], error, pid, tid,
regs->eax, regs->ebx, regs->ecx, regs->edx,
interrupt_stack->sp, regs->ebp, regs->edi, regs->esi,
interrupt_stack->ip, interrupt_stack->flags,
@ -320,12 +320,17 @@ done:
extern "C" void cpp_yield_handler(InterruptStack* interrupt_stack, InterruptRegisters* interrupt_registers)
{
// yield is raised through kernel software interrupt
ASSERT(!InterruptController::get().is_in_service(IRQ_YIELD));
ASSERT(!GDT::is_user_segment(interrupt_stack->cs));
Processor::scheduler().reschedule(interrupt_stack, interrupt_registers);
}
Processor::enter_interrupt(interrupt_stack, interrupt_registers);
Scheduler::get().irq_reschedule();
Processor::leave_interrupt();
extern "C" void cpp_ipi_handler()
{
ASSERT(InterruptController::get().is_in_service(IRQ_IPI));
InterruptController::get().eoi(IRQ_IPI);
Processor::handle_ipi();
}
extern "C" void cpp_irq_handler(uint32_t irq)
@ -349,8 +354,6 @@ done:
InterruptController::get().eoi(irq);
if (auto* handler = s_interruptables[irq])
handler->handle_irq();
else if (irq == IRQ_IPI)
Scheduler::get().yield();
else
dprintln("no handler for irq 0x{2H}", irq);
}
@ -359,7 +362,7 @@ done:
if (current_thread.can_add_signal_to_execute())
current_thread.handle_signal();
Scheduler::get().reschedule_if_idling();
Processor::scheduler().reschedule_if_idle();
ASSERT(Thread::current().state() != Thread::State::Terminated);
@ -405,6 +408,7 @@ done:
#undef X
extern "C" void asm_yield_handler();
extern "C" void asm_ipi_handler();
extern "C" void asm_syscall_handler();
IDT* IDT::create()
@ -423,6 +427,7 @@ done:
#undef X
idt->register_interrupt_handler(IRQ_VECTOR_BASE + IRQ_YIELD, asm_yield_handler);
idt->register_interrupt_handler(IRQ_VECTOR_BASE + IRQ_IPI, asm_ipi_handler);
idt->register_syscall_handler(0x80, asm_syscall_handler);

View File

@ -131,7 +131,7 @@ namespace Kernel
m_event_head = (m_event_head + 1) % m_max_event_count;
m_event_count++;
m_event_semaphore.unblock();
m_event_thread_blocker.unblock();
if (m_type == Type::Keyboard && s_keyboard_device)
s_keyboard_device->notify();
if (m_type == Type::Mouse && s_mouse_device)
@ -149,7 +149,7 @@ namespace Kernel
m_event_lock.unlock(state);
{
LockFreeGuard _(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_event_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_event_thread_blocker));
}
state = m_event_lock.lock();
}
@ -213,7 +213,7 @@ namespace Kernel
}
LockFreeGuard _(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
}
@ -259,7 +259,7 @@ namespace Kernel
}
LockFreeGuard _(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
}

View File

@ -79,7 +79,7 @@ namespace Kernel
if (it != m_arp_table.end())
return it->value;
}
Scheduler::get().yield();
Processor::yield();
}
return BAN::Error::from_errno(ETIMEDOUT);
@ -150,7 +150,7 @@ namespace Kernel
while (m_pending_packets.empty())
{
m_pending_lock.unlock(state);
m_pending_semaphore.block_indefinite();
m_pending_thread_blocker.block_indefinite();
state = m_pending_lock.lock();
}
auto packet = m_pending_packets.front();
@ -178,7 +178,7 @@ namespace Kernel
}
m_pending_packets.push({ .interface = interface, .packet = arp_packet });
m_pending_semaphore.unblock();
m_pending_thread_blocker.unblock();
}
}

View File

@ -308,7 +308,7 @@ namespace Kernel
while (m_pending_packets.empty())
{
m_pending_lock.unlock(state);
m_pending_semaphore.block_indefinite();
m_pending_thread_blocker.block_indefinite();
state = m_pending_lock.lock();
}
auto packet = m_pending_packets.front();
@ -367,7 +367,7 @@ namespace Kernel
m_pending_total_size += ipv4_header.total_length;
m_pending_packets.push({ .interface = interface });
m_pending_semaphore.unblock();
m_pending_thread_blocker.unblock();
}
}

View File

@ -75,7 +75,7 @@ namespace Kernel
while (m_pending_connections.empty())
{
LockFreeGuard _(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
auto connection = m_pending_connections.front();
@ -113,7 +113,7 @@ namespace Kernel
if (SystemTimer::get().ms_since_boot() >= wake_time_ms)
return BAN::Error::from_errno(ECONNABORTED);
LockFreeGuard free(m_mutex);
TRY(Thread::current().block_or_eintr_or_waketime(return_inode->m_semaphore, wake_time_ms, true));
TRY(Thread::current().block_or_eintr_or_waketime_ms(return_inode->m_thread_blocker, wake_time_ms, true));
}
if (address)
@ -170,7 +170,7 @@ namespace Kernel
if (SystemTimer::get().ms_since_boot() >= wake_time_ms)
return BAN::Error::from_errno(ECONNREFUSED);
LockFreeGuard free(m_mutex);
TRY(Thread::current().block_or_eintr_or_waketime(m_semaphore, wake_time_ms, true));
TRY(Thread::current().block_or_eintr_or_waketime_ms(m_thread_blocker, wake_time_ms, true));
}
return {};
@ -207,7 +207,7 @@ namespace Kernel
if (m_state != State::Established)
return return_with_maybe_zero();
LockFreeGuard free(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
const uint32_t to_recv = BAN::Math::min<uint32_t>(buffer.size(), m_recv_window.data_size);
@ -249,7 +249,7 @@ namespace Kernel
if (m_send_window.data_size + message.size() <= m_send_window.buffer->size())
break;
LockFreeGuard free(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
{
@ -259,14 +259,14 @@ namespace Kernel
}
const uint32_t target_ack = m_send_window.start_seq + m_send_window.data_size;
m_semaphore.unblock();
m_thread_blocker.unblock();
while (m_send_window.current_ack < target_ack)
{
if (m_state != State::Established)
return return_with_maybe_zero();
LockFreeGuard free(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_thread_blocker));
}
return message.size();
@ -597,7 +597,7 @@ namespace Kernel
}
}
m_semaphore.unblock();
m_thread_blocker.unblock();
}
void TCPSocket::set_connection_as_closed()
@ -743,11 +743,11 @@ namespace Kernel
}
}
m_semaphore.unblock();
m_semaphore.block_with_wake_time(current_ms + retransmit_timeout_ms);
m_thread_blocker.unblock();
m_thread_blocker.block_with_wake_time_ms(current_ms + retransmit_timeout_ms);
}
m_semaphore.unblock();
m_thread_blocker.unblock();
}
}

View File

@ -70,7 +70,7 @@ namespace Kernel
m_packets.emplace(packet_info);
m_packet_total_size += payload.size();
m_packet_semaphore.unblock();
m_packet_thread_blocker.unblock();
}
BAN::ErrorOr<void> UDPSocket::bind_impl(const sockaddr* address, socklen_t address_len)
@ -93,7 +93,7 @@ namespace Kernel
while (m_packets.empty())
{
m_packet_lock.unlock(state);
TRY(Thread::current().block_or_eintr_indefinite(m_packet_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_packet_thread_blocker));
state = m_packet_lock.lock();
}

View File

@ -73,7 +73,7 @@ namespace Kernel
return BAN::Error::from_errno(EINVAL);
while (connection_info.pending_connections.empty())
TRY(Thread::current().block_or_eintr_indefinite(connection_info.pending_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(connection_info.pending_thread_blocker));
BAN::RefPtr<UnixDomainSocket> pending;
@ -81,7 +81,7 @@ namespace Kernel
SpinLockGuard _(connection_info.pending_lock);
pending = connection_info.pending_connections.front();
connection_info.pending_connections.pop();
connection_info.pending_semaphore.unblock();
connection_info.pending_thread_blocker.unblock();
}
BAN::RefPtr<UnixDomainSocket> return_inode;
@ -162,15 +162,15 @@ namespace Kernel
if (target_info.pending_connections.size() < target_info.pending_connections.capacity())
{
MUST(target_info.pending_connections.push(this));
target_info.pending_semaphore.unblock();
target_info.pending_thread_blocker.unblock();
break;
}
}
TRY(Thread::current().block_or_eintr_indefinite(target_info.pending_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(target_info.pending_thread_blocker));
}
while (!connection_info.connection_done)
Scheduler::get().yield();
Processor::yield();
return {};
}
@ -241,7 +241,7 @@ namespace Kernel
while (m_packet_sizes.full() || m_packet_size_total + packet.size() > s_packet_buffer_size)
{
m_packet_lock.unlock(state);
TRY(Thread::current().block_or_eintr_indefinite(m_packet_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_packet_thread_blocker));
state = m_packet_lock.lock();
}
@ -252,7 +252,7 @@ namespace Kernel
if (!is_streaming())
m_packet_sizes.push(packet.size());
m_packet_semaphore.unblock();
m_packet_thread_blocker.unblock();
m_packet_lock.unlock(state);
return {};
}
@ -357,7 +357,7 @@ namespace Kernel
while (m_packet_size_total == 0)
{
m_packet_lock.unlock(state);
TRY(Thread::current().block_or_eintr_indefinite(m_packet_semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_packet_thread_blocker));
state = m_packet_lock.lock();
}
@ -376,7 +376,7 @@ namespace Kernel
memmove(packet_buffer, packet_buffer + nread, m_packet_size_total - nread);
m_packet_size_total -= nread;
m_packet_semaphore.unblock();
m_packet_thread_blocker.unblock();
m_packet_lock.unlock(state);
return nread;

View File

@ -82,12 +82,13 @@ namespace Kernel
void Process::register_to_scheduler()
{
// FIXME: Allow failing...
{
SpinLockGuard _(s_process_lock);
MUST(s_processes.push_back(this));
}
for (auto* thread : m_threads)
MUST(Scheduler::get().add_thread(thread));
MUST(Processor::scheduler().add_thread(thread));
}
Process* Process::create_kernel()
@ -206,10 +207,10 @@ namespace Kernel
ProcFileSystem::get().on_process_delete(*this);
m_exit_status.exited = true;
m_exit_status.semaphore.unblock();
m_exit_status.thread_blocker.unblock();
while (m_exit_status.waiting > 0)
Scheduler::get().yield();
Processor::yield();
m_process_lock.lock();
@ -250,16 +251,6 @@ namespace Kernel
m_exit_status.exit_code = __WGENEXITCODE(status, signal);
while (!m_threads.empty())
m_threads.front()->on_exit();
//for (auto* thread : m_threads)
// if (thread != &Thread::current())
// Scheduler::get().terminate_thread(thread);
//if (this == &Process::current())
//{
// m_threads.clear();
// Processor::set_interrupt_state(InterruptState::Disabled);
// Thread::current().setup_process_cleanup();
// Scheduler::get().yield();
//}
}
size_t Process::proc_meminfo(off_t offset, BAN::ByteSpan buffer) const
@ -534,13 +525,13 @@ namespace Kernel
m_cmdline = BAN::move(str_argv);
m_environ = BAN::move(str_envp);
asm volatile("cli");
Processor::set_interrupt_state(InterruptState::Disabled);
}
m_has_called_exec = true;
m_threads.front()->setup_exec();
Scheduler::get().yield();
Processor::yield();
ASSERT_NOT_REACHED();
}
@ -603,12 +594,12 @@ namespace Kernel
if (seconds == 0)
return 0;
uint64_t wake_time = SystemTimer::get().ms_since_boot() + seconds * 1000;
Scheduler::get().set_current_thread_sleeping(wake_time);
const uint64_t wake_time_ms = SystemTimer::get().ms_since_boot() + (seconds * 1000);
SystemTimer::get().sleep_ms(seconds * 1000);
uint64_t current_time = SystemTimer::get().ms_since_boot();
if (current_time < wake_time)
return BAN::Math::div_round_up<long>(wake_time - current_time, 1000);
const uint64_t current_ms = SystemTimer::get().ms_since_boot();
if (current_ms < wake_time_ms)
return BAN::Math::div_round_up<long>(wake_time_ms - current_ms, 1000);
return 0;
}
@ -622,23 +613,21 @@ namespace Kernel
TRY(validate_pointer_access(rmtp, sizeof(timespec)));
}
uint64_t sleep_ms = rqtp->tv_sec * 1000 + BAN::Math::div_round_up<uint64_t>(rqtp->tv_nsec, 1'000'000);
if (sleep_ms == 0)
const uint64_t sleep_ns = (rqtp->tv_sec * 1'000'000'000) + rqtp->tv_nsec;
if (sleep_ns == 0)
return 0;
uint64_t wake_time_ms = SystemTimer::get().ms_since_boot() + sleep_ms;
const uint64_t wake_time_ns = SystemTimer::get().ns_since_boot() + sleep_ns;
SystemTimer::get().sleep_ns(sleep_ns);
Scheduler::get().set_current_thread_sleeping(wake_time_ms);
uint64_t current_ms = SystemTimer::get().ms_since_boot();
if (current_ms < wake_time_ms)
const uint64_t current_ns = SystemTimer::get().ns_since_boot();
if (current_ns < wake_time_ns)
{
if (rmtp)
{
uint64_t remaining_ms = wake_time_ms - current_ms;
rmtp->tv_sec = remaining_ms / 1000;
rmtp->tv_nsec = (remaining_ms % 1000) * 1'000'000;
const uint64_t remaining_ns = wake_time_ns - current_ns;
rmtp->tv_sec = remaining_ns / 1'000'000'000;
rmtp->tv_nsec = remaining_ns % 1'000'000'000;
}
return BAN::Error::from_errno(EINTR);
}
@ -1140,7 +1129,7 @@ namespace Kernel
break;
LockFreeGuard free(m_process_lock);
SystemTimer::get().sleep(1);
SystemTimer::get().sleep_ms(1);
}
if (arguments->readfds)
@ -1347,7 +1336,7 @@ namespace Kernel
TRY(validate_pointer_access(args, sizeof(sys_mmap_t)));
}
if (args->prot != PROT_NONE && args->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
if (args->prot != PROT_NONE && (args->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)))
return BAN::Error::from_errno(EINVAL);
if (args->flags & MAP_FIXED)
@ -1628,7 +1617,7 @@ namespace Kernel
{
process.add_pending_signal(signal);
// FIXME: This feels hacky
Scheduler::get().unblock_thread(process.m_threads.front()->tid());
Processor::scheduler().unblock_thread(process.m_threads.front()->tid());
}
return (pid > 0) ? BAN::Iteration::Break : BAN::Iteration::Continue;
}

View File

@ -1,17 +1,31 @@
#include <kernel/InterruptController.h>
#include <kernel/Memory/kmalloc.h>
#include <kernel/Processor.h>
#include <kernel/Terminal/TerminalDriver.h>
#include <kernel/Thread.h>
#include <kernel/Timer/Timer.h>
extern Kernel::TerminalDriver* g_terminal_driver;
namespace Kernel
{
static constexpr uint32_t MSR_IA32_GS_BASE = 0xC0000101;
ProcessorID Processor::s_bsb_id { PROCESSOR_NONE };
ProcessorID Processor::s_bsb_id { PROCESSOR_NONE };
BAN::Atomic<uint8_t> Processor::s_processor_count { 0 };
BAN::Atomic<bool> Processor::s_is_smp_enabled { false };
BAN::Atomic<bool> Processor::s_should_print_cpu_load { false };
static BAN::Array<Processor, 0xFF> s_processors;
static BAN::Atomic<uint8_t> s_processors_created { 0 };
static ProcessorID read_processor_id()
// 32 bit milli seconds are definitely enough as APs start on boot
static BAN::Atomic<uint32_t> s_first_ap_ready_ms { 0 };
static BAN::Array<Processor, 0xFF> s_processors;
static BAN::Array<ProcessorID, 0xFF> s_processor_ids { PROCESSOR_NONE };
ProcessorID Processor::read_processor_id()
{
uint32_t id;
asm volatile(
@ -21,16 +35,18 @@ namespace Kernel
: "=b"(id)
:: "eax", "ecx", "edx"
);
return id;
return ProcessorID(id);
}
Processor& Processor::create(ProcessorID id)
{
// bsb is the first processor
if (s_bsb_id == PROCESSOR_NONE)
if (s_bsb_id == PROCESSOR_NONE && id == PROCESSOR_NONE)
s_bsb_id = id = read_processor_id();
if (s_bsb_id == PROCESSOR_NONE || id == PROCESSOR_NONE || id.m_id >= s_processors.size())
Kernel::panic("Trying to initialize invalid processor {}", id.m_id);
auto& processor = s_processors[id];
auto& processor = s_processors[id.m_id];
ASSERT(processor.m_id == PROCESSOR_NONE);
processor.m_id = id;
@ -44,13 +60,27 @@ namespace Kernel
processor.m_idt = IDT::create();
ASSERT(processor.m_idt);
processor.m_scheduler = MUST(Scheduler::create());
ASSERT(processor.m_scheduler);
SMPMessage* smp_storage = new SMPMessage[0x1000];
ASSERT(smp_storage);
for (size_t i = 0; i < 0xFFF; i++)
smp_storage[i].next = &smp_storage[i + 1];
smp_storage[0xFFF].next = nullptr;
processor.m_smp_pending = nullptr;
processor.m_smp_free = smp_storage;
s_processors_created++;
return processor;
}
Processor& Processor::initialize()
{
auto id = read_processor_id();
auto& processor = s_processors[id];
auto& processor = s_processors[id.m_id];
ASSERT(processor.m_gdt);
processor.m_gdt->load();
@ -72,41 +102,265 @@ namespace Kernel
return processor;
}
void Processor::allocate_idle_thread()
ProcessorID Processor::id_from_index(size_t index)
{
ASSERT(idle_thread() == nullptr);
auto* idle_thread = MUST(Thread::create_kernel([](void*) { for (;;) asm volatile("hlt"); }, nullptr, nullptr));
write_gs_ptr(offsetof(Processor, m_idle_thread), idle_thread);
ASSERT(index < s_processor_count);
ASSERT(s_processor_ids[index] != PROCESSOR_NONE);
return s_processor_ids[index];
}
void Processor::enter_interrupt(InterruptStack* interrupt_stack, InterruptRegisters* interrupt_registers)
void Processor::wait_until_processors_ready()
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_stack)) == nullptr);
write_gs_ptr(offsetof(Processor, m_interrupt_stack), interrupt_stack);
write_gs_ptr(offsetof(Processor, m_interrupt_registers), interrupt_registers);
if (s_processors_created == 1)
{
ASSERT(current_is_bsb());
s_processor_count++;
s_processor_ids[0] = current_id();
}
// wait until bsb is ready
if (current_is_bsb())
{
s_processor_count = 1;
s_processor_ids[0] = current_id();
// single processor system
if (s_processors_created == 1)
return;
// wait until first AP is ready
const uint64_t timeout_ms = SystemTimer::get().ms_since_boot() + 1000;
while (s_first_ap_ready_ms == 0)
{
if (SystemTimer::get().ms_since_boot() >= timeout_ms)
{
dprintln("Could not initialize any APs :(");
return;
}
__builtin_ia32_pause();
}
}
else
{
// wait until bsb is ready, it shall get index 0
while (s_processor_count == 0)
__builtin_ia32_pause();
auto lookup_index = s_processor_count++;
ASSERT(s_processor_ids[lookup_index] == PROCESSOR_NONE);
s_processor_ids[lookup_index] = current_id();
uint32_t expected = 0;
s_first_ap_ready_ms.compare_exchange(expected, SystemTimer::get().ms_since_boot());
}
// wait until all processors are initialized
{
const uint32_t timeout_ms = s_first_ap_ready_ms + 1000;
while (s_processor_count < s_processors_created)
{
if (SystemTimer::get().ms_since_boot() >= timeout_ms)
{
if (current_is_bsb())
dprintln("Could not initialize {} processors :(", s_processors_created - s_processor_count);
break;
}
__builtin_ia32_pause();
}
}
s_is_smp_enabled = true;
}
void Processor::leave_interrupt()
void Processor::handle_ipi()
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_stack)) != nullptr);
write_gs_ptr(offsetof(Processor, m_interrupt_stack), nullptr);
write_gs_ptr(offsetof(Processor, m_interrupt_registers), nullptr);
handle_smp_messages();
}
InterruptStack& Processor::get_interrupt_stack()
template<typename F>
void with_atomic_lock(BAN::Atomic<bool>& lock, F callback)
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_stack)));
return *read_gs_sized<InterruptStack*>(offsetof(Processor, m_interrupt_stack));
bool expected = false;
while (!lock.compare_exchange(expected, true, BAN::MemoryOrder::memory_order_acquire))
{
__builtin_ia32_pause();
expected = false;
}
callback();
lock.store(false, BAN::MemoryOrder::memory_order_release);
}
InterruptRegisters& Processor::get_interrupt_registers()
void Processor::handle_smp_messages()
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_registers)));
return *read_gs_sized<InterruptRegisters*>(offsetof(Processor, m_interrupt_registers));
auto state = get_interrupt_state();
set_interrupt_state(InterruptState::Disabled);
auto processor_id = current_id();
auto& processor = s_processors[processor_id.m_id];
SMPMessage* pending = nullptr;
with_atomic_lock(processor.m_smp_pending_lock,
[&]()
{
pending = processor.m_smp_pending;
processor.m_smp_pending = nullptr;
}
);
bool should_preempt = false;
if (pending)
{
// reverse smp message queue from LIFO to FIFO
{
SMPMessage* reversed = nullptr;
for (SMPMessage* message = pending; message;)
{
SMPMessage* next = message->next;
message->next = reversed;
reversed = message;
message = next;
}
pending = reversed;
}
SMPMessage* last_handled = nullptr;
// handle messages
for (auto* message = pending; message; message = message->next)
{
switch (message->type)
{
case SMPMessage::Type::FlushTLB:
for (size_t i = 0; i < message->flush_tlb.page_count; i++)
asm volatile("invlpg (%0)" :: "r"(message->flush_tlb.vaddr + i * PAGE_SIZE) : "memory");
break;
case SMPMessage::Type::NewThread:
processor.m_scheduler->handle_new_thread_request(message->new_thread);
break;
case SMPMessage::Type::UnblockThread:
processor.m_scheduler->handle_unblock_request(message->unblock_thread);
break;
case SMPMessage::Type::SchedulerPreemption:
should_preempt = true;
break;
}
last_handled = message;
}
with_atomic_lock(processor.m_smp_free_lock,
[&]()
{
last_handled->next = processor.m_smp_free;
processor.m_smp_free = pending;
}
);
}
if (should_preempt)
processor.m_scheduler->preempt();
set_interrupt_state(state);
}
void Processor::send_smp_message(ProcessorID processor_id, const SMPMessage& message, bool send_ipi)
{
ASSERT(processor_id != current_id());
auto state = get_interrupt_state();
set_interrupt_state(InterruptState::Disabled);
auto& processor = s_processors[processor_id.m_id];
// take free message slot
SMPMessage* storage = nullptr;
with_atomic_lock(processor.m_smp_free_lock,
[&]()
{
storage = processor.m_smp_free;
ASSERT(storage && storage->next);
processor.m_smp_free = storage->next;
}
);
// write message
*storage = message;
// push message to pending queue
with_atomic_lock(processor.m_smp_pending_lock,
[&]()
{
storage->next = processor.m_smp_pending;
processor.m_smp_pending = storage;
}
);
if (send_ipi)
InterruptController::get().send_ipi(processor_id);
set_interrupt_state(state);
}
void Processor::broadcast_smp_message(const SMPMessage& message)
{
if (!is_smp_enabled())
return;
auto state = get_interrupt_state();
set_interrupt_state(InterruptState::Disabled);
for (size_t i = 0; i < Processor::count(); i++)
{
auto processor_id = s_processor_ids[i];
if (processor_id != current_id())
send_smp_message(processor_id, message, false);
}
InterruptController::get().broadcast_ipi();
set_interrupt_state(state);
}
void Processor::yield()
{
auto state = get_interrupt_state();
set_interrupt_state(InterruptState::Disabled);
#if ARCH(x86_64)
asm volatile(
"movq %%rsp, %%rcx;"
"movq %[load_sp], %%rsp;"
"int %[yield];"
"movq %%rcx, %%rsp;"
// NOTE: This is offset by 2 pointers since interrupt without PL change
// does not push SP and SS. This allows accessing "whole" interrupt stack.
:: [load_sp]"r"(Processor::current_stack_top() - 2 * sizeof(uintptr_t)),
[yield]"i"(IRQ_VECTOR_BASE + IRQ_YIELD)
: "memory", "rcx"
);
#elif ARCH(i686)
asm volatile(
"movl %%esp, %%ecx;"
"movl %[load_sp], %%esp;"
"int %[yield];"
"movl %%ecx, %%esp;"
// NOTE: This is offset by 2 pointers since interrupt without PL change
// does not push SP and SS. This allows accessing "whole" interrupt stack.
:: [load_sp]"r"(Processor::current_stack_top() - 2 * sizeof(uintptr_t)),
[yield]"i"(IRQ_VECTOR_BASE + IRQ_YIELD)
: "memory", "ecx"
);
#else
#error
#endif
Processor::set_interrupt_state(state);
}
}

View File

@ -1,260 +1,715 @@
#include <kernel/Arch.h>
#include <kernel/Attributes.h>
#include <kernel/GDT.h>
#include <BAN/Optional.h>
#include <BAN/Sort.h>
#include <kernel/InterruptController.h>
#include <kernel/Process.h>
#include <kernel/Scheduler.h>
#include <kernel/Thread.h>
#include <kernel/Timer/Timer.h>
#define SCHEDULER_VERIFY_STACK 1
#define DEBUG_SCHEDULER 0
#define SCHEDULER_ASSERT 1
#if SCHEDULER_ASSERT == 0
#undef ASSERT
#define ASSERT(...)
#endif
namespace Kernel
{
static Scheduler* s_instance = nullptr;
static constexpr uint64_t s_reschedule_interval_ns = 10'000'000;
static constexpr uint64_t s_load_balance_interval_ns = 1'000'000'000;
static BAN::Atomic<uint8_t> s_schedulers_initialized { 0 };
struct ProcessorInfo
{
uint64_t idle_time_ns { s_load_balance_interval_ns };
uint32_t max_load_threads { 0 };
};
static SpinLock s_processor_info_time_lock;
static BAN::Array<ProcessorInfo, 0xFF> s_processor_infos;
static BAN::Atomic<size_t> s_next_processor_index { 0 };
void SchedulerQueue::add_thread_to_back(Node* node)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
node->next = nullptr;
node->prev = m_tail;
(m_tail ? m_tail->next : m_head) = node;
m_tail = node;
}
void SchedulerQueue::add_thread_with_wake_time(Node* node)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
if (m_tail == nullptr || node->wake_time_ns >= m_tail->wake_time_ns)
return add_thread_to_back(node);
Node* next = m_head;
Node* prev = nullptr;
while (next && node->wake_time_ns > next->wake_time_ns)
{
prev = next;
next = next->next;
}
node->next = next;
node->prev = prev;
(next ? next->prev : m_tail) = node;
(prev ? prev->next : m_head) = node;
}
template<typename F>
SchedulerQueue::Node* SchedulerQueue::remove_with_condition(F callback)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
for (Node* node = m_head; node; node = node->next)
{
if (!callback(node))
continue;
remove_node(node);
return node;
}
return nullptr;
}
void SchedulerQueue::remove_node(Node* node)
{
(node->prev ? node->prev->next : m_head) = node->next;
(node->next ? node->next->prev : m_tail) = node->prev;
node->prev = nullptr;
node->next = nullptr;
}
SchedulerQueue::Node* SchedulerQueue::front()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
ASSERT(!empty());
return m_head;
}
SchedulerQueue::Node* SchedulerQueue::pop_front()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
if (empty())
return nullptr;
Node* result = m_head;
m_head = m_head->next;
(m_head ? m_head->prev : m_tail) = nullptr;
result->next = nullptr;
return result;
}
BAN::ErrorOr<Scheduler*> Scheduler::create()
{
auto* scheduler = new Scheduler();
if (scheduler == nullptr)
return BAN::Error::from_errno(ENOMEM);
return scheduler;
}
BAN::ErrorOr<void> Scheduler::initialize()
{
ASSERT(s_instance == nullptr);
s_instance = new Scheduler();
ASSERT(s_instance);
Processor::allocate_idle_thread();
m_idle_thread = TRY(Thread::create_kernel([](void*) { asm volatile("1: hlt; jmp 1b"); }, nullptr, nullptr));
ASSERT(m_idle_thread);
size_t processor_index = 0;
for (; processor_index < Processor::count(); processor_index++)
if (Processor::id_from_index(processor_index) == Processor::current_id())
break;
ASSERT(processor_index < Processor::count());
// each CPU does load balance at different times. This calulates the offset to other CPUs
m_last_load_balance_ns = s_load_balance_interval_ns * processor_index / Processor::count();
m_idle_ns = -m_last_load_balance_ns;
s_schedulers_initialized++;
while (s_schedulers_initialized < Processor::count())
__builtin_ia32_pause();
return {};
}
Scheduler& Scheduler::get()
{
ASSERT(s_instance);
return *s_instance;
}
void Scheduler::start()
void Scheduler::add_current_to_most_loaded(SchedulerQueue* target_queue)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
ASSERT(!m_active_threads.empty());
// broadcast ipi (yield) for each processor
InterruptController::get().broadcast_ipi();
yield();
ASSERT_NOT_REACHED();
}
Thread& Scheduler::current_thread()
{
auto* current = Processor::get_current_thread();
return current ? *current->thread : *Processor::idle_thread();
}
pid_t Scheduler::current_tid()
{
if (s_instance == nullptr)
return 0;
return Scheduler::get().current_thread().tid();
}
void Scheduler::setup_next_thread()
{
ASSERT(m_lock.current_processor_has_lock());
if (auto* current = Processor::get_current_thread())
bool has_current = false;
for (auto& info : m_most_loaded_threads)
{
auto* thread = current->thread;
if (thread->state() == Thread::State::Terminated)
if (info.node == m_current)
{
PageTable::kernel().load();
delete thread;
delete current;
}
else
{
// thread->state() can be NotStarted when calling exec or cleaning up process
if (thread->state() != Thread::State::NotStarted)
{
thread->interrupt_stack() = Processor::get_interrupt_stack();
thread->interrupt_registers() = Processor::get_interrupt_registers();
}
if (current->should_block)
{
current->should_block = false;
m_blocking_threads.add_with_wake_time(current);
}
else
{
m_active_threads.push_back(current);
}
info.queue = target_queue;
has_current = true;
break;
}
}
SchedulerQueue::Node* node = nullptr;
while (!m_active_threads.empty())
if (!has_current)
{
node = m_active_threads.pop_front();
if (node->thread->state() != Thread::State::Terminated)
size_t index = 0;
for (; index < m_most_loaded_threads.size() - 1; index++)
if (m_most_loaded_threads[index].node == nullptr)
break;
m_most_loaded_threads[index].queue = target_queue;
m_most_loaded_threads[index].node = m_current;
}
BAN::sort::sort(m_most_loaded_threads.begin(), m_most_loaded_threads.end(),
[](const ThreadInfo& a, const ThreadInfo& b) -> bool
{
if (a.node == nullptr || b.node == nullptr)
return a.node;
return a.node->time_used_ns > b.node->time_used_ns;
}
);
}
void Scheduler::update_most_loaded_node_queue(SchedulerQueue::Node* node, SchedulerQueue* target_queue)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
for (auto& info : m_most_loaded_threads)
{
if (info.node == node)
{
info.queue = target_queue;
break;
}
}
}
void Scheduler::remove_node_from_most_loaded(SchedulerQueue::Node* node)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
size_t i = 0;
for (; i < m_most_loaded_threads.size(); i++)
if (m_most_loaded_threads[i].node == node)
break;
PageTable::kernel().load();
delete node->thread;
delete node;
node = nullptr;
for (; i < m_most_loaded_threads.size() - 1; i++)
m_most_loaded_threads[i] = m_most_loaded_threads[i + 1];
m_most_loaded_threads.back().node = nullptr;
m_most_loaded_threads.back().queue = nullptr;
}
void Scheduler::reschedule(InterruptStack* interrupt_stack, InterruptRegisters* interrupt_registers)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
// If there are no other threads in run queue, reschedule can be no-op :)
if (m_run_queue.empty() && !m_current_will_block && current_thread().state() == Thread::State::Executing)
return;
if (m_current == nullptr)
m_idle_ns += SystemTimer::get().ns_since_boot() - m_idle_start_ns;
else
{
switch (m_current->thread->state())
{
case Thread::State::Terminated:
remove_node_from_most_loaded(m_current);
PageTable::kernel().load();
delete m_current->thread;
delete m_current;
m_thread_count--;
break;
case Thread::State::Executing:
{
const uint64_t current_ns = SystemTimer::get().ns_since_boot();
m_current->thread->interrupt_stack() = *interrupt_stack;
m_current->thread->interrupt_registers() = *interrupt_registers;
m_current->time_used_ns += current_ns - m_current->last_start_ns;
add_current_to_most_loaded(m_current_will_block ? &m_block_queue : &m_run_queue);
if (!m_current_will_block)
m_run_queue.add_thread_to_back(m_current);
else
{
m_current_will_block = false;
m_block_queue.add_thread_with_wake_time(m_current);
}
break;
}
case Thread::State::NotStarted:
ASSERT(!m_current_will_block);
m_current->time_used_ns = 0;
remove_node_from_most_loaded(m_current);
m_run_queue.add_thread_to_back(m_current);
break;
}
}
Processor::set_current_thread(node);
auto* thread = node ? node->thread : Processor::idle_thread();
if (thread->has_process())
thread->process().page_table().load();
else
while ((m_current = m_run_queue.pop_front()))
{
if (m_current->thread->state() != Thread::State::Terminated)
break;
remove_node_from_most_loaded(m_current);
PageTable::kernel().load();
delete m_current->thread;
delete m_current;
m_thread_count--;
}
if (m_current == nullptr)
{
PageTable::kernel().load();
*interrupt_stack = m_idle_thread->interrupt_stack();
*interrupt_registers = m_idle_thread->interrupt_registers();
m_idle_thread->m_state = Thread::State::Executing;
m_idle_start_ns = SystemTimer::get().ns_since_boot();
return;
}
update_most_loaded_node_queue(m_current, nullptr);
auto* thread = m_current->thread;
auto& page_table = thread->has_process() ? thread->process().page_table() : PageTable::kernel();
page_table.load();
if (thread->state() == Thread::State::NotStarted)
thread->m_state = Thread::State::Executing;
Processor::gdt().set_tss_stack(thread->kernel_stack_top());
Processor::get_interrupt_stack() = thread->interrupt_stack();
Processor::get_interrupt_registers() = thread->interrupt_registers();
*interrupt_stack = thread->interrupt_stack();
*interrupt_registers = thread->interrupt_registers();
m_current->last_start_ns = SystemTimer::get().ns_since_boot();
}
void Scheduler::timer_reschedule()
void Scheduler::reschedule_if_idle()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
if (!m_current && !m_run_queue.empty())
Processor::yield();
}
void Scheduler::preempt()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
if (Processor::is_smp_enabled())
do_load_balancing();
{
SpinLockGuard _(m_lock);
m_blocking_threads.remove_with_wake_time(m_active_threads, SystemTimer::get().ms_since_boot());
const uint64_t current_ns = SystemTimer::get().ns_since_boot();
while (!m_block_queue.empty() && current_ns >= m_block_queue.front()->wake_time_ns)
{
auto* node = m_block_queue.pop_front();
update_most_loaded_node_queue(node, &m_run_queue);
m_run_queue.add_thread_to_back(node);
}
}
// Broadcast IPI to all other processors for them
// to perform reschedule
InterruptController::get().broadcast_ipi();
yield();
}
void Scheduler::yield()
{
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
ASSERT(!m_lock.current_processor_has_lock());
#if ARCH(x86_64)
asm volatile(
"movq %%rsp, %%rcx;"
"movq %[load_sp], %%rsp;"
"int %[yield];"
"movq %%rcx, %%rsp;"
// NOTE: This is offset by 2 pointers since interrupt without PL change
// does not push SP and SS. This allows accessing "whole" interrupt stack.
:: [load_sp]"r"(Processor::current_stack_top() - 2 * sizeof(uintptr_t)),
[yield]"i"(IRQ_VECTOR_BASE + IRQ_YIELD)
: "memory", "rcx"
);
#elif ARCH(i686)
asm volatile(
"movl %%esp, %%ecx;"
"movl %[load_sp], %%esp;"
"int %[yield];"
"movl %%ecx, %%esp;"
// NOTE: This is offset by 2 pointers since interrupt without PL change
// does not push SP and SS. This allows accessing "whole" interrupt stack.
:: [load_sp]"r"(Processor::current_stack_top() - 2 * sizeof(uintptr_t)),
[yield]"i"(IRQ_VECTOR_BASE + IRQ_YIELD)
: "memory", "ecx"
);
#else
#error
#endif
Processor::set_interrupt_state(state);
}
void Scheduler::irq_reschedule()
{
SpinLockGuard _(m_lock);
setup_next_thread();
}
void Scheduler::reschedule_if_idling()
{
{
SpinLockGuard _(m_lock);
if (Processor::get_current_thread())
return;
if (m_active_threads.empty())
return;
const uint64_t current_ns = SystemTimer::get().ns_since_boot();
if (current_ns >= m_last_reschedule_ns + s_reschedule_interval_ns)
{
m_last_reschedule_ns = current_ns;
Processor::yield();
}
}
}
void Scheduler::timer_interrupt()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
// FIXME: all processors should LAPIC for their preemption
if (Processor::is_smp_enabled())
{
ASSERT(Processor::current_is_bsb());
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::SchedulerPreemption,
.scheduler_preemption = 0 // dummy value
});
}
yield();
preempt();
}
void Scheduler::handle_unblock_request(const UnblockRequest& request)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
switch (request.type)
{
case UnblockRequest::Type::ThreadBlocker:
do_unblock(request.blocker);
break;
case UnblockRequest::Type::ThreadID:
do_unblock(request.tid);
break;
default:
ASSERT_NOT_REACHED();
}
}
void Scheduler::handle_new_thread_request(const NewThreadRequest& reqeuest)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
if (reqeuest.blocked)
m_block_queue.add_thread_with_wake_time(reqeuest.node);
else
m_run_queue.add_thread_to_back(reqeuest.node);
}
bool Scheduler::do_unblock(ThreadBlocker* blocker)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
// FIXME: This could _easily_ be O(1)
bool did_unblock = false;
if (m_current && m_current->blocker == blocker && m_current_will_block)
{
m_current_will_block = false;
did_unblock = true;
}
SchedulerQueue::Node* match;
while ((match = m_block_queue.remove_with_condition([blocker](const auto* node) { return node->blocker == blocker; })))
{
dprintln_if(DEBUG_SCHEDULER, "CPU {}: unblock blocker {} (tid {})", Processor::current_id(), blocker, match->thread->tid());
update_most_loaded_node_queue(match, &m_run_queue);
m_run_queue.add_thread_to_back(match);
did_unblock = true;
}
return did_unblock;
}
bool Scheduler::do_unblock(pid_t tid)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
// FIXME: This could _easily_ be O(1)
if (m_current && m_current->thread->tid() == tid && m_current_will_block)
{
m_current_will_block = false;
return true;
}
auto* match = m_block_queue.remove_with_condition([tid](const auto* node) { return node->thread->tid() == tid; });
if (match == nullptr)
return false;
dprintln_if(DEBUG_SCHEDULER, "CPU {}: unblock tid {}", Processor::current_id(), tid);
update_most_loaded_node_queue(match, &m_run_queue);
m_run_queue.add_thread_to_back(match);
return true;
}
ProcessorID Scheduler::find_least_loaded_processor() const
{
ProcessorID least_loaded_id = Processor::current_id();
uint64_t most_idle_ns = m_idle_ns;
uint32_t least_max_load_threads = static_cast<uint32_t>(-1);
for (uint8_t i = 0; i < Processor::count(); i++)
{
auto processor_id = Processor::id_from_index(i);
if (processor_id == Processor::current_id())
continue;
const auto& info = s_processor_infos[i];
if (info.idle_time_ns < most_idle_ns || info.max_load_threads > least_max_load_threads)
continue;
least_loaded_id = processor_id;
most_idle_ns = info.idle_time_ns;
least_max_load_threads = info.max_load_threads;
}
return least_loaded_id;
}
void Scheduler::do_load_balancing()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
const uint64_t current_ns = SystemTimer::get().ns_since_boot();
if (current_ns < m_last_load_balance_ns + s_load_balance_interval_ns)
return;
if (m_current == nullptr)
{
m_idle_ns += current_ns - m_idle_start_ns;
m_idle_start_ns = current_ns;
}
else
{
m_current->time_used_ns += current_ns - m_current->last_start_ns;
m_current->last_start_ns = current_ns;
add_current_to_most_loaded(nullptr);
}
if constexpr(DEBUG_SCHEDULER)
{
const uint64_t duration_ns = current_ns - m_last_load_balance_ns;
const uint64_t processing_ns = duration_ns - m_idle_ns;
{
const uint64_t load_percent_x1000 = BAN::Math::div_round_up<uint64_t>(processing_ns * 100'000, duration_ns);
dprintln("CPU {}: { 2}.{3}% ({} threads)", Processor::current_id(), load_percent_x1000 / 1000, load_percent_x1000 % 1000, m_thread_count);
}
if (m_current)
{
const char* name = "unknown";
if (m_current->thread->has_process() && m_current->thread->process().is_userspace() && m_current->thread->process().userspace_info().argv)
name = m_current->thread->process().userspace_info().argv[0];
const uint64_t load_percent_x1000 = BAN::Math::div_round_up<uint64_t>(m_current->time_used_ns * 100'000, processing_ns);
dprintln(" tid { 2}: { 3}.{3}% <{}> current", m_current->thread->tid(), load_percent_x1000 / 1000, load_percent_x1000 % 1000, name);
}
m_run_queue.remove_with_condition(
[&](SchedulerQueue::Node* node)
{
const uint64_t load_percent_x1000 = BAN::Math::div_round_up<uint64_t>(node->time_used_ns * 100'000, processing_ns);
dprintln(" tid { 2}: { 3}.{3}% active", node->thread->tid(), load_percent_x1000 / 1000, load_percent_x1000 % 1000);
return false;
}
);
m_block_queue.remove_with_condition(
[&](SchedulerQueue::Node* node)
{
const uint64_t load_percent_x1000 = BAN::Math::div_round_up<uint64_t>(node->time_used_ns * 100'000, processing_ns);
dprintln(" tid { 2}: { 3}.{3}% blocked", node->thread->tid(), load_percent_x1000 / 1000, load_percent_x1000 % 1000);
return false;
}
);
}
if (!s_processor_info_time_lock.try_lock_interrupts_disabled())
{
dprintln_if(DEBUG_SCHEDULER, "Load balancing cannot keep up");
return;
}
if (m_idle_ns == 0 && m_should_calculate_max_load_threads)
{
const auto& most_loaded_thread = m_most_loaded_threads.front();
if (most_loaded_thread.node == nullptr || most_loaded_thread.node->time_used_ns == 0)
s_processor_infos[Processor::current_id().as_u32()].max_load_threads = 0;
else
{
const uint64_t duration_ns = current_ns - m_last_load_balance_ns;
const uint64_t max_thread_load_x1000 = 1000 * m_most_loaded_threads.front().node->time_used_ns / duration_ns;
const uint64_t max_load_thread_count = ((2000 / max_thread_load_x1000) + 1) / 2;
s_processor_infos[Processor::current_id().as_u32()].max_load_threads = max_load_thread_count;
}
}
constexpr auto absolute_difference_u64 = [](uint64_t a, uint64_t b) { return (a < b) ? (b - a) : (a - b); };
for (size_t i = 1; i < m_most_loaded_threads.size(); i++)
{
auto& thread_info = m_most_loaded_threads[i];
if (thread_info.node == nullptr)
break;
if (thread_info.node == m_current || thread_info.queue == nullptr)
continue;
auto least_loaded_id = find_least_loaded_processor();
if (least_loaded_id == Processor::current_id())
break;
auto& most_idle_info = s_processor_infos[least_loaded_id.as_u32()];
auto& my_info = s_processor_infos[Processor::current_id().as_u32()];
if (m_idle_ns == 0)
{
if (my_info.max_load_threads == 0)
break;
if (most_idle_info.idle_time_ns == 0)
{
if (most_idle_info.max_load_threads + 1 > my_info.max_load_threads - 1)
break;
my_info.max_load_threads -= 1;
most_idle_info.max_load_threads += 1;
dprintln_if(DEBUG_SCHEDULER, "CPU {}: sending tid {} to CPU {} (max load)", Processor::current_id(), thread_info.node->thread->tid(), least_loaded_id);
}
else
{
my_info.max_load_threads -= 1;
most_idle_info.idle_time_ns = 0;
most_idle_info.max_load_threads = 1;
dprintln_if(DEBUG_SCHEDULER, "CPU {}: sending tid {} to CPU {}", Processor::current_id(), thread_info.node->thread->tid(), least_loaded_id);
}
}
else
{
const uint64_t my_current_proc_ns = s_load_balance_interval_ns - BAN::Math::min(s_load_balance_interval_ns, m_idle_ns);
const uint64_t other_current_proc_ns = s_load_balance_interval_ns - BAN::Math::min(s_load_balance_interval_ns, most_idle_info.idle_time_ns);
const uint64_t current_proc_diff_ns = absolute_difference_u64(my_current_proc_ns, other_current_proc_ns);
const uint64_t my_new_proc_ns = my_current_proc_ns - BAN::Math::min(thread_info.node->time_used_ns, my_current_proc_ns);
const uint64_t other_new_proc_ns = other_current_proc_ns + thread_info.node->time_used_ns;
const uint64_t new_proc_diff_ns = absolute_difference_u64(my_new_proc_ns, other_new_proc_ns);
// require 10% decrease between CPU loads to do send thread to other CPU
if (new_proc_diff_ns >= current_proc_diff_ns || (100 * (current_proc_diff_ns - new_proc_diff_ns) / current_proc_diff_ns) < 10)
continue;
most_idle_info.idle_time_ns -= BAN::Math::min(thread_info.node->time_used_ns, most_idle_info.idle_time_ns);
m_idle_ns += thread_info.node->time_used_ns;
dprintln_if(DEBUG_SCHEDULER, "CPU {}: sending tid {} to CPU {}", Processor::current_id(), thread_info.node->thread->tid(), least_loaded_id);
}
thread_info.node->time_used_ns = 0;
{
auto& my_queue = (thread_info.queue == &m_run_queue) ? m_run_queue : m_block_queue;
my_queue.remove_node(thread_info.node);
m_thread_count--;
}
Processor::send_smp_message(least_loaded_id, {
.type = Processor::SMPMessage::Type::NewThread,
.new_thread = {
.node = thread_info.node,
.blocked = thread_info.queue == &m_block_queue
}
});
thread_info.node = nullptr;
thread_info.queue = nullptr;
if (m_idle_ns == 0)
break;
}
s_processor_infos[Processor::current_id().as_u32()].idle_time_ns = m_idle_ns;
s_processor_info_time_lock.unlock(InterruptState::Disabled);
if (m_current)
m_current->time_used_ns = 0;
for (auto& thread_info : m_most_loaded_threads)
thread_info = {};
m_run_queue .remove_with_condition([&](SchedulerQueue::Node* node) { node->time_used_ns = 0; return false; });
m_block_queue.remove_with_condition([&](SchedulerQueue::Node* node) { node->time_used_ns = 0; return false; });
m_idle_ns = 0;
m_should_calculate_max_load_threads = true;
m_last_load_balance_ns += s_load_balance_interval_ns;
}
BAN::ErrorOr<void> Scheduler::add_thread(Thread* thread)
{
auto* node = new SchedulerQueue::Node(thread);
if (node == nullptr)
auto* new_node = new SchedulerQueue::Node(thread);
if (new_node == nullptr)
return BAN::Error::from_errno(ENOMEM);
SpinLockGuard _(m_lock);
m_active_threads.push_back(node);
const size_t processor_index = s_next_processor_index++ % Processor::count();
const auto processor_id = Processor::id_from_index(processor_index);
if (processor_id == Processor::current_id())
{
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
m_run_queue.add_thread_to_back(new_node);
m_thread_count++;
Processor::set_interrupt_state(state);
}
else
{
Processor::send_smp_message(processor_id, {
.type = Processor::SMPMessage::Type::NewThread,
.new_thread = {
.node = new_node,
.blocked = false
}
});
}
return {};
}
void Scheduler::terminate_thread(Thread* thread)
void Scheduler::block_current_thread(ThreadBlocker* blocker, uint64_t wake_time_ns)
{
auto state = m_lock.lock();
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
ASSERT(thread->state() == Thread::State::Executing);
thread->m_state = Thread::State::Terminated;
thread->interrupt_stack().sp = Processor::current_stack_top();
m_current->blocker = blocker;
m_current->wake_time_ns = wake_time_ns;
m_current_will_block = true;
Processor::yield();
m_lock.unlock(InterruptState::Disabled);
Processor::set_interrupt_state(state);
}
// actual deletion will be done while rescheduling
void Scheduler::unblock_threads(ThreadBlocker* blocker)
{
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
if (&current_thread() == thread)
do_unblock(blocker);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::UnblockThread,
.unblock_thread = {
.type = UnblockRequest::Type::ThreadBlocker,
.blocker = blocker
}
});
Processor::set_interrupt_state(state);
}
void Scheduler::unblock_thread(pid_t tid)
{
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
if (!do_unblock(tid))
{
yield();
ASSERT_NOT_REACHED();
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::UnblockThread,
.unblock_thread = {
.type = UnblockRequest::Type::ThreadID,
.tid = tid
}
});
}
Processor::set_interrupt_state(state);
}
void Scheduler::set_current_thread_sleeping_impl(Semaphore* semaphore, uint64_t wake_time)
Thread& Scheduler::current_thread()
{
auto state = m_lock.lock();
auto* current = Processor::get_current_thread();
current->semaphore = semaphore;
current->wake_time = wake_time;
current->should_block = true;
m_lock.unlock(InterruptState::Disabled);
yield();
Processor::set_interrupt_state(state);
if (m_current)
return *m_current->thread;
return *m_idle_thread;
}
void Scheduler::set_current_thread_sleeping(uint64_t wake_time)
Thread& Scheduler::idle_thread()
{
set_current_thread_sleeping_impl(nullptr, wake_time);
return *m_idle_thread;
}
void Scheduler::block_current_thread(Semaphore* semaphore, uint64_t wake_time)
pid_t Scheduler::current_tid() const
{
set_current_thread_sleeping_impl(semaphore, wake_time);
return m_current ? m_current->thread->tid() : 0;
}
void Scheduler::unblock_threads(Semaphore* semaphore)
bool Scheduler::is_idle() const
{
SpinLockGuard _(m_lock);
m_blocking_threads.remove_with_condition(m_active_threads, [&](auto* node) { return node->semaphore == semaphore; });
}
void Scheduler::unblock_thread(pid_t tid)
{
SpinLockGuard _(m_lock);
m_blocking_threads.remove_with_condition(m_active_threads, [&](auto* node) { return node->thread->tid() == tid; });
return m_current == nullptr;
}
}

View File

@ -1,28 +0,0 @@
#include <kernel/Scheduler.h>
#include <kernel/Semaphore.h>
#include <kernel/Timer/Timer.h>
namespace Kernel
{
void Semaphore::block_indefinite()
{
Scheduler::get().block_current_thread(this, ~(uint64_t)0);
}
void Semaphore::block_with_timeout(uint64_t timeout_ms)
{
Scheduler::get().block_current_thread(this, SystemTimer::get().ms_since_boot() + timeout_ms);
}
void Semaphore::block_with_wake_time(uint64_t wake_time)
{
Scheduler::get().block_current_thread(this, wake_time);
}
void Semaphore::unblock()
{
Scheduler::get().unblock_threads(this);
}
}

View File

@ -8,7 +8,7 @@
namespace Kernel
{
static constexpr uint64_t s_ata_timeout = 1000;
static constexpr uint64_t s_ata_timeout_ms = 1000;
static void start_cmd(volatile HBAPortMemorySpace* port)
{
@ -118,9 +118,9 @@ namespace Kernel
command.c = 1;
command.command = ATA_COMMAND_IDENTIFY;
uint64_t timeout = SystemTimer::get().ms_since_boot() + s_ata_timeout;
const uint64_t timeout_ms = SystemTimer::get().ms_since_boot() + s_ata_timeout_ms;
while (m_port->tfd & (ATA_STATUS_BSY | ATA_STATUS_DRQ))
if (SystemTimer::get().ms_since_boot() >= timeout)
if (SystemTimer::get().ms_since_boot() >= timeout_ms)
return BAN::Error::from_errno(ETIMEDOUT);
m_port->ci = 1 << slot.value();
@ -158,17 +158,17 @@ namespace Kernel
{
static constexpr uint64_t poll_timeout_ms = 10;
auto start_time = SystemTimer::get().ms_since_boot();
const auto start_time_ms = SystemTimer::get().ms_since_boot();
while (SystemTimer::get().ms_since_boot() < start_time + poll_timeout_ms)
while (SystemTimer::get().ms_since_boot() < start_time_ms + poll_timeout_ms)
if (!(m_port->ci & (1 << command_slot)))
return {};
// FIXME: This should actually block once semaphores support blocking with timeout.
// FIXME: This should actually block once ThreadBlocker support blocking with timeout.
// This doesn't allow scheduler to go properly idle.
while (SystemTimer::get().ms_since_boot() < start_time + s_ata_timeout)
while (SystemTimer::get().ms_since_boot() < start_time_ms + s_ata_timeout_ms)
{
Scheduler::get().yield();
Processor::yield();
if (!(m_port->ci & (1 << command_slot)))
return {};
}

View File

@ -67,9 +67,7 @@ namespace Kernel
static void select_delay()
{
auto time = SystemTimer::get().ns_since_boot();
while (SystemTimer::get().ns_since_boot() < time + 400)
continue;
SystemTimer::get().sleep_ns(400);
}
void ATABus::select_device(bool secondary)
@ -106,7 +104,7 @@ namespace Kernel
io_write(ATA_PORT_CONTROL, ATA_CONTROL_nIEN);
io_write(ATA_PORT_COMMAND, ATA_COMMAND_IDENTIFY);
SystemTimer::get().sleep(1);
SystemTimer::get().sleep_ms(1);
// No device on port
if (io_read(ATA_PORT_STATUS) == 0)
@ -130,7 +128,7 @@ namespace Kernel
}
io_write(ATA_PORT_COMMAND, ATA_COMMAND_IDENTIFY_PACKET);
SystemTimer::get().sleep(1);
SystemTimer::get().sleep_ms(1);
if (auto res = wait(true); res.is_error())
{

View File

@ -1,6 +1,6 @@
#include <kernel/Lock/LockGuard.h>
#include <kernel/Scheduler.h>
#include <kernel/Storage/NVMe/Queue.h>
#include <kernel/Thread.h>
#include <kernel/Timer/Timer.h>
namespace Kernel
@ -44,7 +44,7 @@ namespace Kernel
m_doorbell.cq_head = m_cq_head;
m_semaphore.unblock();
m_thread_blocker.unblock();
}
uint16_t NVMeQueue::submit_command(NVMe::SubmissionQueueEntry& sqe)
@ -66,15 +66,15 @@ namespace Kernel
m_doorbell.sq_tail = m_sq_tail;
}
const uint64_t start_time = SystemTimer::get().ms_since_boot();
while (!(m_done_mask & cid_mask) && SystemTimer::get().ms_since_boot() < start_time + s_nvme_command_poll_timeout_ms)
const uint64_t start_time_ms = SystemTimer::get().ms_since_boot();
while (!(m_done_mask & cid_mask) && SystemTimer::get().ms_since_boot() < start_time_ms + s_nvme_command_poll_timeout_ms)
continue;
// FIXME: Here is a possible race condition if done mask is set before
// scheduler has put the current thread blocking.
// EINTR should also be handled here.
while (!(m_done_mask & cid_mask) && SystemTimer::get().ms_since_boot() < start_time + s_nvme_command_timeout_ms)
Scheduler::get().block_current_thread(&m_semaphore, start_time + s_nvme_command_timeout_ms);
while (!(m_done_mask & cid_mask) && SystemTimer::get().ms_since_boot() < start_time_ms + s_nvme_command_timeout_ms)
m_thread_blocker.block_with_wake_time_ms(start_time_ms + s_nvme_command_timeout_ms);
if (m_done_mask & cid_mask)
{
@ -93,7 +93,7 @@ namespace Kernel
while (~m_used_mask == 0)
{
m_lock.unlock(state);
m_semaphore.block_with_timeout(s_nvme_command_timeout_ms);
m_thread_blocker.block_with_timeout_ms(s_nvme_command_timeout_ms);
state = m_lock.lock();
}

View File

@ -57,7 +57,7 @@ namespace Kernel
if ((flags & TTY_FLAG_ENABLE_INPUT) && !m_tty_ctrl.receive_input)
{
m_tty_ctrl.receive_input = true;
m_tty_ctrl.semaphore.unblock();
m_tty_ctrl.thread_blocker.unblock();
}
if (flags & TTY_FLAG_ENABLE_OUTPUT)
m_tty_ctrl.draw_graphics = true;
@ -94,7 +94,7 @@ namespace Kernel
while (true)
{
while (!TTY::current()->m_tty_ctrl.receive_input)
TTY::current()->m_tty_ctrl.semaphore.block_indefinite();
TTY::current()->m_tty_ctrl.thread_blocker.block_indefinite();
LibInput::RawKeyEvent event;
size_t read = MUST(inode->read(0, BAN::ByteSpan::from(event)));
@ -237,7 +237,7 @@ namespace Kernel
if (ch == '\x04' && m_termios.canonical)
{
m_output.flush = true;
m_output.semaphore.unblock();
m_output.thread_blocker.unblock();
return;
}
@ -279,7 +279,7 @@ namespace Kernel
if (ch == '\n' || !m_termios.canonical)
{
m_output.flush = true;
m_output.semaphore.unblock();
m_output.thread_blocker.unblock();
}
}
@ -338,7 +338,7 @@ namespace Kernel
while (!m_output.flush)
{
LockFreeGuard _(m_mutex);
TRY(Thread::current().block_or_eintr_indefinite(m_output.semaphore));
TRY(Thread::current().block_or_eintr_indefinite(m_output.thread_blocker));
}
if (m_output.bytes == 0)
@ -356,7 +356,7 @@ namespace Kernel
if (m_output.bytes == 0)
m_output.flush = false;
m_output.semaphore.unblock();
m_output.thread_blocker.unblock();
return to_copy;
}

View File

@ -120,7 +120,12 @@ namespace Kernel
Thread& Thread::current()
{
return Scheduler::get().current_thread();
return Processor::scheduler().current_thread();
}
pid_t Thread::current_tid()
{
return Processor::scheduler().current_tid();
}
Process& Thread::process()
@ -396,36 +401,36 @@ namespace Kernel
{
m_signal_pending_mask |= mask;
if (this != &Thread::current())
Scheduler::get().unblock_thread(tid());
Processor::scheduler().unblock_thread(tid());
return true;
}
return false;
}
BAN::ErrorOr<void> Thread::block_or_eintr_indefinite(Semaphore& semaphore)
BAN::ErrorOr<void> Thread::block_or_eintr_indefinite(ThreadBlocker& thread_blocker)
{
if (is_interrupted_by_signal())
return BAN::Error::from_errno(EINTR);
semaphore.block_indefinite();
thread_blocker.block_indefinite();
if (is_interrupted_by_signal())
return BAN::Error::from_errno(EINTR);
return {};
}
BAN::ErrorOr<void> Thread::block_or_eintr_or_timeout(Semaphore& semaphore, uint64_t timeout_ms, bool etimedout)
BAN::ErrorOr<void> Thread::block_or_eintr_or_timeout_ns(ThreadBlocker& thread_blocker, uint64_t timeout_ns, bool etimedout)
{
uint64_t wake_time_ms = SystemTimer::get().ms_since_boot() + timeout_ms;
return block_or_eintr_or_waketime(semaphore, wake_time_ms, etimedout);
const uint64_t wake_time_ns = SystemTimer::get().ns_since_boot() + timeout_ns;
return block_or_eintr_or_waketime_ns(thread_blocker, wake_time_ns, etimedout);
}
BAN::ErrorOr<void> Thread::block_or_eintr_or_waketime(Semaphore& semaphore, uint64_t wake_time_ms, bool etimedout)
BAN::ErrorOr<void> Thread::block_or_eintr_or_waketime_ns(ThreadBlocker& thread_blocker, uint64_t wake_time_ns, bool etimedout)
{
if (is_interrupted_by_signal())
return BAN::Error::from_errno(EINTR);
semaphore.block_with_wake_time(wake_time_ms);
thread_blocker.block_with_timeout_ns(wake_time_ns);
if (is_interrupted_by_signal())
return BAN::Error::from_errno(EINTR);
if (etimedout && SystemTimer::get().ms_since_boot() >= wake_time_ms)
if (etimedout && SystemTimer::get().ms_since_boot() >= wake_time_ns)
return BAN::Error::from_errno(ETIMEDOUT);
return {};
}
@ -444,15 +449,12 @@ namespace Kernel
{
Processor::set_interrupt_state(InterruptState::Disabled);
setup_process_cleanup();
Scheduler::get().yield();
Processor::yield();
ASSERT_NOT_REACHED();
}
else
Scheduler::get().terminate_thread(this);
}
else
{
Scheduler::get().terminate_thread(this);
}
m_state = State::Terminated;
Processor::yield();
ASSERT_NOT_REACHED();
}

View File

@ -0,0 +1,28 @@
#include <kernel/Processor.h>
#include <kernel/ThreadBlocker.h>
#include <kernel/Timer/Timer.h>
namespace Kernel
{
void ThreadBlocker::block_indefinite()
{
Processor::scheduler().block_current_thread(this, ~static_cast<uint64_t>(0));
}
void ThreadBlocker::block_with_timeout_ns(uint64_t timeout_ns)
{
Processor::scheduler().block_current_thread(this, SystemTimer::get().ns_since_boot() + timeout_ns);
}
void ThreadBlocker::block_with_wake_time_ns(uint64_t wake_time_ns)
{
Processor::scheduler().block_current_thread(this, wake_time_ns);
}
void ThreadBlocker::unblock()
{
Processor::scheduler().unblock_threads(this);
}
}

View File

@ -4,7 +4,7 @@
#include <kernel/InterruptController.h>
#include <kernel/Memory/PageTable.h>
#include <kernel/MMIO.h>
#include <kernel/Scheduler.h>
#include <kernel/Processor.h>
#include <kernel/Timer/HPET.h>
#define HPET_PERIOD_MAX 0x05F5E100
@ -272,7 +272,7 @@ namespace Kernel
m_last_ticks = current_ticks;
}
Scheduler::get().timer_reschedule();
Processor::scheduler().timer_interrupt();
}
uint64_t HPET::ms_since_boot() const

View File

@ -1,7 +1,7 @@
#include <kernel/IDT.h>
#include <kernel/InterruptController.h>
#include <kernel/IO.h>
#include <kernel/Scheduler.h>
#include <kernel/Processor.h>
#include <kernel/Timer/PIT.h>
#define PIT_IRQ 0
@ -58,7 +58,7 @@ namespace Kernel
SpinLockGuard _(m_lock);
m_system_time++;
}
Kernel::Scheduler::get().timer_reschedule();
Processor::scheduler().timer_interrupt();
}
uint64_t PIT::read_counter() const

View File

@ -69,15 +69,17 @@ namespace Kernel
return m_timer->time_since_boot();
}
void SystemTimer::sleep(uint64_t ms) const
void SystemTimer::sleep_ns(uint64_t ns) const
{
if (ms == 0)
if (ns == 0)
return;
uint64_t wake_time = ms_since_boot() + ms;
Scheduler::get().set_current_thread_sleeping(wake_time);
uint64_t current_time = ms_since_boot();
if (current_time < wake_time)
dwarnln("sleep woke {} ms too soon", wake_time - current_time);
const uint64_t wake_time_ns = ns_since_boot() + ns;
Processor::scheduler().block_current_thread(nullptr, wake_time_ns);
//const uint64_t current_time_ns = ns_since_boot();
//if (current_time_ns < wake_time_ns)
// dwarnln("sleep woke {} ms too soon", BAN::Math::div_round_up<uint64_t>(wake_time_ns - current_time_ns, 1'000'000));
}
timespec SystemTimer::real_time() const

View File

@ -250,7 +250,7 @@ namespace Kernel
bool expected { true };
while (!m_port_changed.compare_exchange(expected, false))
{
m_port_semaphore.block_with_timeout(100);
m_port_thread_blocker.block_with_timeout_ms(100);
expected = true;
}
}
@ -482,7 +482,7 @@ namespace Kernel
break;
}
m_port_changed = true;
m_port_semaphore.unblock();
m_port_thread_blocker.unblock();
break;
}
case XHCI::TRBType::BandwidthRequestEvent:

View File

@ -108,7 +108,7 @@ extern "C" void kernel_main(uint32_t boot_magic, uint32_t boot_info)
parse_boot_info(boot_magic, boot_info);
dprintln("boot info parsed");
Processor::create(0);
Processor::create(PROCESSOR_NONE);
Processor::initialize();
dprintln("BSP initialized");
@ -167,12 +167,11 @@ extern "C" void kernel_main(uint32_t boot_magic, uint32_t boot_info)
Random::initialize();
dprintln("RNG initialized");
MUST(Scheduler::initialize());
dprintln("Scheduler initialized");
Processor::wait_until_processors_ready();
MUST(Processor::scheduler().initialize());
Scheduler& scheduler = Scheduler::get();
Process::create_kernel(init2, nullptr);
scheduler.start();
Processor::yield();
ASSERT_NOT_REACHED();
}
@ -233,14 +232,11 @@ extern "C" void ap_main()
Processor::initialize();
PageTable::kernel().initial_load();
Processor::allocate_idle_thread();
InterruptController::get().enable();
dprintln("ap{} initialized", Processor::current_id());
Processor::wait_until_processors_ready();
MUST(Processor::scheduler().initialize());
// wait until scheduler is started and we get irq for reschedule
Processor::set_interrupt_state(InterruptState::Enabled);
while (true)
asm volatile("hlt");
asm volatile("sti; 1: hlt; jmp 1b");
ASSERT_NOT_REACHED();
}