Add back x86_32 support #5

Merged
Bananymous merged 46 commits from x86_32 into main 2024-04-03 02:36:29 +03:00
76 changed files with 2596 additions and 1815 deletions

View File

@ -106,6 +106,36 @@ namespace BAN
template<typename T> inline constexpr bool is_unsigned_v = is_unsigned<T>::value;
template<typename T> concept unsigned_integral = is_unsigned_v<T> && is_integral_v<T>;
#define __BAN_TRAITS_MAKE_UNSIGNED_CV(__type) \
template<> struct make_unsigned<__type> { using type = unsigned __type; }; \
template<> struct make_unsigned<const __type> { using type = unsigned const __type; }; \
template<> struct make_unsigned<volatile __type> { using type = unsigned volatile __type; }; \
template<> struct make_unsigned<const volatile __type> { using type = unsigned const volatile __type; };
template<typename T> requires is_arithmetic_v<T> struct make_unsigned { using type = T; };
__BAN_TRAITS_MAKE_UNSIGNED_CV(char)
__BAN_TRAITS_MAKE_UNSIGNED_CV(short)
__BAN_TRAITS_MAKE_UNSIGNED_CV(int)
__BAN_TRAITS_MAKE_UNSIGNED_CV(long)
__BAN_TRAITS_MAKE_UNSIGNED_CV(long long)
template<typename T> using make_unsigned_t = typename make_unsigned<T>::type;
#undef __BAN_TRAITS_MAKE_UNSIGNED_CV
#define __BAN_TRAITS_MAKE_SIGNED_CV(__type) \
template<> struct make_signed<unsigned __type> { using type = __type; }; \
template<> struct make_signed<unsigned const __type> { using type = const __type; }; \
template<> struct make_signed<unsigned volatile __type> { using type = volatile __type; }; \
template<> struct make_signed<unsigned const volatile __type> { using type = const volatile __type; };
template<typename T> requires is_arithmetic_v<T> struct make_signed { using type = T; };
__BAN_TRAITS_MAKE_SIGNED_CV(char)
__BAN_TRAITS_MAKE_SIGNED_CV(short)
__BAN_TRAITS_MAKE_SIGNED_CV(int)
__BAN_TRAITS_MAKE_SIGNED_CV(long)
__BAN_TRAITS_MAKE_SIGNED_CV(long long)
template<typename T> using make_signed_t = typename make_signed<T>::type;
#undef __BAN_TRAITS_MAKE_SIGNED_CV
template<typename T> struct less { constexpr bool operator()(const T& lhs, const T& rhs) const { return lhs < rhs; } };
template<typename T> struct equal { constexpr bool operator()(const T& lhs, const T& rhs) const { return lhs == rhs; } };
template<typename T> struct greater { constexpr bool operator()(const T& lhs, const T& rhs) const { return lhs > rhs; } };

View File

@ -86,7 +86,7 @@ namespace LibELF
return BAN::Error::from_errno(ENOEXEC);
}
#if ARCH(i386)
#if ARCH(i686)
if (m_file_header.e_ident[EI_CLASS] != ELFCLASS32)
#elif ARCH(x86_64)
if (m_file_header.e_ident[EI_CLASS] != ELFCLASS64)

View File

@ -42,7 +42,7 @@ namespace LibELF
const Elf32SectionHeader& section_header32(size_t) const;
const char* lookup_section_name32(uint32_t) const;
const char* lookup_string32(size_t, uint32_t) const;
#if ARCH(i386)
#if ARCH(i686)
const Elf32FileHeader& file_header_native() const { return file_header32(); }
const Elf32ProgramHeader& program_header_native(size_t index) const { return program_header32(index); }
const Elf32SectionHeader& section_header_native(size_t index) const { return section_header32(index); }

View File

@ -155,7 +155,7 @@ namespace LibELF
Elf64Xword p_align;
};
#if ARCH(i386)
#if ARCH(i686)
using ElfNativeAddr = Elf32Addr;
using ElfNativeOff = Elf32Off;
using ElfNativeHalf = Elf32Half;

View File

@ -161,7 +161,7 @@ gdt:
.quad 0x00CF9A000000FFFF # 32-bit code
gdtr:
.short . - gdt - 1
.quad gdt
.long gdt
banan_boot_info:
boot_command_line:

View File

@ -5,15 +5,26 @@
.set e_machine, 18
.set e_version, 20
.set e_entry, 24
.set e_phoff, 32
.set e_shoff, 40
.set e_flags, 48
.set e_ehsize, 52
.set e_phentsize, 54
.set e_phnum, 56
.set e_shentsize, 58
.set e_shnum, 60
.set e_shstrndx, 62
.set e32_phoff, 28
.set e32_shoff, 32
.set e32_flags, 36
.set e32_ehsize, 40
.set e32_phentsize, 42
.set e32_phnum, 44
.set e32_shentsize, 46
.set e32_shnum, 48
.set e32_shstrndx, 50
.set e64_phoff, 32
.set e64_shoff, 40
.set e64_flags, 48
.set e64_ehsize, 52
.set e64_phentsize, 54
.set e64_phnum, 56
.set e64_shentsize, 58
.set e64_shnum, 60
.set e64_shstrndx, 62
# e_ident offsets
.set EI_CLASS, 4
@ -22,6 +33,7 @@
# e_ident constants
.set ELFMAGIC, 0x464C457F
.set ELFCLASS32, 1
.set ELFCLASS64, 2
.set ELFDATA2LSB, 1
.set EV_CURRENT, 1
@ -31,18 +43,30 @@
# program header field offsets
.set p_type, 0
.set p_flags, 4
.set p_offset, 8
.set p_vaddr, 16
.set p_paddr, 24
.set p_filesz, 32
.set p_memsz, 40
.set p_align, 48
.set p32_offset, 4
.set p32_vaddr, 8
.set p32_paddr, 12
.set p32_filesz, 16
.set p32_memsz, 20
.set p32_flags, 24
.set p32_align, 28
.set p64_flags, 4
.set p64_offset, 8
.set p64_vaddr, 16
.set p64_paddr, 24
.set p64_filesz, 32
.set p64_memsz, 40
.set p64_align, 48
# p_type constants
.set PT_NULL, 0
.set PT_LOAD, 1
# mask for entry point and segment loading
.set LOAD_MASK, 0x07FFFFFF
.code16
.section .stage2
@ -52,8 +76,12 @@ elf_validate_file_header:
cmpl $ELFMAGIC, (elf_file_header)
jne .elf_validate_file_header_invalid_magic
cmpb $ELFCLASS32, (elf_file_header + EI_CLASS)
je .elf_validate_file_header_class_valid
cmpb $ELFCLASS64, (elf_file_header + EI_CLASS)
jne .elf_validate_file_header_only_64bit_supported
je .elf_validate_file_header_class_valid
jmp .elf_validate_file_header_invalid_class
.elf_validate_file_header_class_valid:
cmpb $ELFDATA2LSB, (elf_file_header + EI_DATA)
jne .elf_validate_file_header_only_little_endian_supported
@ -72,8 +100,8 @@ elf_validate_file_header:
.elf_validate_file_header_invalid_magic:
movw $elf_validate_file_header_invalid_magic_msg, %si
jmp print_and_halt
.elf_validate_file_header_only_64bit_supported:
movw $elf_validate_file_header_only_64bit_supported_msg, %si
.elf_validate_file_header_invalid_class:
movw $elf_validate_file_header_invalid_class_msg, %si
jmp print_and_halt
.elf_validate_file_header_only_little_endian_supported:
movw $elf_validate_file_header_only_little_endian_supported_msg, %si
@ -86,6 +114,77 @@ elf_validate_file_header:
jmp print_and_halt
# sets memory to zero
# edi: start address
# ecx: byte count
# on return
# edi: start address + byte count
# ecx: 0
elf_memset_zero:
test %ecx, %ecx
jz .elf_memset_zero_done
.elf_memset_zero_loop:
movb $0, (%edi)
incl %edi
decl %ecx
jnz .elf_memset_zero_loop
.elf_memset_zero_done:
ret
# reads memory specified by 32 bit elf_program_header to memory
elf_read_program_header32_to_memory:
pushal
pushl %ebp
movl %esp, %ebp
# memset p_filesz -> p_memsz to 0
movl (elf_program_header + p32_filesz), %ebx
movl (elf_program_header + p32_vaddr), %edi
andl $LOAD_MASK, %edi
addl %ebx, %edi
movl (elf_program_header + p32_memsz), %ecx
subl %ebx, %ecx
call elf_memset_zero
# read file specified in program header to memory
movl (elf_program_header + p32_offset), %eax
movl (elf_program_header + p32_vaddr), %edi
andl $LOAD_MASK, %edi
movl (elf_program_header + p32_filesz), %ecx
call *%esi
leavel
popal
ret
# reads memory specified by 64 bit elf_program_header to memory
elf_read_program_header64_to_memory:
pushal
pushl %ebp
movl %esp, %ebp
# memset p_filesz -> p_memsz to 0
movl (elf_program_header + p64_filesz), %ebx
movl (elf_program_header + p64_vaddr), %edi
andl $LOAD_MASK, %edi
addl %ebx, %edi
movl (elf_program_header + p64_memsz), %ecx
subl %ebx, %ecx
call elf_memset_zero
# read file specified in program header to memory
movl (elf_program_header + p64_offset), %eax
movl (elf_program_header + p64_vaddr), %edi
andl $LOAD_MASK, %edi
movl (elf_program_header + p64_filesz), %ecx
call *%esi
leavel
popal
ret
# read callback format
# eax: first byte
# ecx: byte count
@ -104,42 +203,72 @@ elf_read_kernel_to_memory:
movl %esp, %ebp
subl $2, %esp
# read file header
# read start of file header
movl $0, %eax
movl $64, %ecx
movl $24, %ecx
movl $elf_file_header, %edi
call *%esi
call elf_validate_file_header
cmpl $0, (elf_file_header + e_phoff + 4)
# determine file header size
movl $52, %ecx
movl $64, %edx
cmpb $ELFCLASS64, (elf_file_header + EI_CLASS)
cmovel %edx, %ecx
# read full file header
movl $0, %eax
movl $elf_file_header, %edi
call *%esi
# verify that e_phoff fits in 32 bits
cmpb $ELFCLASS64, (elf_file_header + EI_CLASS)
jne .elf_read_kernel_to_memory_valid_offset
cmpl $0, (elf_file_header + e64_phoff + 4)
jnz .elf_read_kernel_to_memory_unsupported_offset
.elf_read_kernel_to_memory_valid_offset:
# read architecture phentsize and phnum to fixed locations
movw (elf_file_header + e32_phentsize), %ax
movw (elf_file_header + e32_phnum), %bx
movl (elf_file_header + e32_phoff), %ecx
cmpb $ELFCLASS64, (elf_file_header + EI_CLASS)
cmovew (elf_file_header + e64_phentsize), %ax
cmovew (elf_file_header + e64_phnum), %bx
cmovel (elf_file_header + e64_phoff), %ecx
movw %ax, (elf_file_header_phentsize)
movw %bx, (elf_file_header_phnum)
movl %ecx, (elf_file_header_phoff)
# current program header
movw $0, -2(%ebp)
.elf_read_kernel_to_memory_loop_program_headers:
movw -2(%ebp), %cx
cmpw (elf_file_header + e_phnum), %cx
cmpw (elf_file_header_phnum), %cx
jae .elf_read_kernel_to_memory_done
# eax := program_header_index * e_phentsize + e_phoff
xorl %eax, %eax
movw %cx, %ax
xorl %ebx, %ebx
movw (elf_file_header + e_phentsize), %bx
movw (elf_file_header_phentsize), %bx
mull %ebx
addl (elf_file_header + e_phoff), %eax
addl (elf_file_header_phoff), %eax
jc .elf_read_kernel_to_memory_unsupported_offset
# setup program header size and address
movl $56, %ecx
movl $elf_program_header, %edi
# determine program header size
movl $32, %ecx
movl $56, %edx
cmpb $ELFCLASS64, (elf_file_header + EI_CLASS)
cmovel %edx, %ecx
# read the program header
# read program header
movl $elf_program_header, %edi
call *%esi
# test if program header is empty
# test if program header is NULL header
cmpl $PT_NULL, (elf_program_header + p_type)
je .elf_read_kernel_to_memory_null_program_header
@ -147,33 +276,12 @@ elf_read_kernel_to_memory:
cmpl $PT_LOAD, (elf_program_header + p_type)
jne .elf_read_kernel_to_memory_not_loadable_header
# memset p_filesz -> p_memsz to 0
movl (elf_program_header + p_filesz), %ebx
movl (elf_program_header + p_vaddr), %edi
andl $0x7FFFFFFF, %edi
addl %ebx, %edi
movl (elf_program_header + p_memsz), %ecx
subl %ebx, %ecx
jz .elf_read_kernel_to_memory_memset_done
.elf_read_kernel_to_memory_memset:
movb $0, (%edi)
incl %edi
decl %ecx
jnz .elf_read_kernel_to_memory_memset
.elf_read_kernel_to_memory_memset_done:
# read file specified in program header to memory
movl (elf_program_header + p_offset), %eax
movl (elf_program_header + p_vaddr), %edi
andl $0x7FFFFFFF, %edi
movl (elf_program_header + p_filesz), %ecx
#call print_hex32; call print_newline
call *%esi
# read program header to memory
movl $elf_read_program_header32_to_memory, %eax
movl $elf_read_program_header64_to_memory, %ebx
cmpb $ELFCLASS64, (elf_file_header + EI_CLASS)
cmovel %ebx, %eax
call *%eax
.elf_read_kernel_to_memory_null_program_header:
incw -2(%ebp)
@ -185,7 +293,7 @@ elf_read_kernel_to_memory:
# set kernel entry address
movl (elf_file_header + e_entry), %eax
andl $0x7FFFFF, %eax
andl $LOAD_MASK, %eax
ret
@ -200,8 +308,8 @@ elf_read_kernel_to_memory:
elf_validate_file_header_invalid_magic_msg:
.asciz "ELF: file has invalid ELF magic"
elf_validate_file_header_only_64bit_supported_msg:
.asciz "ELF: file is not targettint 64 bit"
elf_validate_file_header_invalid_class_msg:
.asciz "ELF: file has invalid ELF class"
elf_validate_file_header_only_little_endian_supported_msg:
.asciz "ELF: file is not in little endian format"
elf_validate_file_header_not_current_version_msg:
@ -219,5 +327,12 @@ elf_read_kernel_to_memory_not_loadable_header_msg:
elf_file_header:
.skip 64
elf_file_header_phentsize:
.skip 2
elf_file_header_phnum:
.skip 2
elf_file_header_phoff:
.skip 4 # NOTE: only 32 bit offsets are supported
elf_program_header:
.skip 56

View File

@ -1,6 +1,11 @@
cmake_minimum_required(VERSION 3.26)
project(x86_64-banan_os-bootloader-installer CXX)
if (NOT DEFINED ENV{BANAN_ARCH})
message(FATAL_ERROR "environment variable BANAN_ARCH not defined")
endif ()
set(BANAN_ARCH $ENV{BANAN_ARCH})
project(banan_os-bootloader-installer CXX)
set(SOURCES
crc32.cpp
@ -10,8 +15,8 @@ set(SOURCES
main.cpp
)
add_executable(x86_64-banan_os-bootloader-installer ${SOURCES})
target_compile_options(x86_64-banan_os-bootloader-installer PRIVATE -O2 -std=c++20)
target_compile_definitions(x86_64-banan_os-bootloader-installer PRIVATE __arch=x86_64)
target_include_directories(x86_64-banan_os-bootloader-installer PRIVATE ${CMAKE_SOURCE_DIR}/../../LibELF/include)
target_include_directories(x86_64-banan_os-bootloader-installer PRIVATE ${CMAKE_SOURCE_DIR}/../../kernel/include)
add_executable(banan_os-bootloader-installer ${SOURCES})
target_compile_options(banan_os-bootloader-installer PRIVATE -O2 -std=c++20)
target_compile_definitions(banan_os-bootloader-installer PRIVATE __arch=${BANAN_ARCH})
target_include_directories(banan_os-bootloader-installer PRIVATE ${CMAKE_SOURCE_DIR}/../../LibELF/include)
target_include_directories(banan_os-bootloader-installer PRIVATE ${CMAKE_SOURCE_DIR}/../../kernel/include)

View File

@ -81,7 +81,7 @@ bool ELFFile::validate_elf_header() const
#if ARCH(x86_64)
if (elf_header.e_ident[EI_CLASS] != ELFCLASS64)
#elif ARCH(i386)
#elif ARCH(i686)
if (elf_header.e_ident[EI_CLASS] != ELFCLASS32)
#endif
{

View File

@ -4,7 +4,7 @@ project(kernel CXX C ASM)
if("${BANAN_ARCH}" STREQUAL "x86_64")
set(ELF_FORMAT elf64-x86-64)
elseif("${BANAN_ARCH}" STREQUAL "i386")
elseif("${BANAN_ARCH}" STREQUAL "i686")
set(ELF_FORMAT elf32-i386)
endif()
@ -33,6 +33,8 @@ set(KERNEL_SOURCES
kernel/FS/TmpFS/FileSystem.cpp
kernel/FS/TmpFS/Inode.cpp
kernel/FS/VirtualFileSystem.cpp
kernel/GDT.cpp
kernel/IDT.cpp
kernel/Input/KeyboardLayout.cpp
kernel/Input/KeyEvent.cpp
kernel/Input/PS2/Controller.cpp
@ -83,7 +85,6 @@ set(KERNEL_SOURCES
kernel/Storage/Partition.cpp
kernel/Storage/StorageDevice.cpp
kernel/Syscall.cpp
kernel/Syscall.S
kernel/Terminal/FramebufferTerminal.cpp
kernel/Terminal/Serial.cpp
kernel/Terminal/TTY.cpp
@ -106,35 +107,33 @@ if("${BANAN_ARCH}" STREQUAL "x86_64")
set(KERNEL_SOURCES
${KERNEL_SOURCES}
arch/x86_64/boot.S
arch/x86_64/GDT.cpp
arch/x86_64/IDT.cpp
arch/x86_64/interrupts.S
arch/x86_64/PageTable.cpp
arch/x86_64/Signal.S
arch/x86_64/Syscall.S
arch/x86_64/Thread.S
)
elseif("${BANAN_ARCH}" STREQUAL "i386")
file(GLOB_RECURSE LAI_SOURCES
lai/*.c
)
set(LAI_SOURCES
${LAI_SOURCES}
kernel/lai_host.cpp
)
elseif("${BANAN_ARCH}" STREQUAL "i686")
set(KERNEL_SOURCES
${KERNEL_SOURCES}
arch/i386/boot.S
arch/i386/GDT.cpp
arch/i386/IDT.cpp
arch/i386/MMU.cpp
arch/i386/SpinLock.S
arch/i386/Thread.S
arch/i686/boot.S
arch/i686/interrupts.S
arch/i686/PageTable.cpp
arch/i686/Signal.S
arch/i686/Syscall.S
arch/i686/Thread.S
)
else()
message(FATAL_ERROR "unsupported architecure ${BANAN_ARCH}")
endif()
file(GLOB_RECURSE LAI_SOURCES
lai/*.c
)
set(LAI_SOURCES
${LAI_SOURCES}
kernel/lai_host.cpp
)
set(BAN_SOURCES
../BAN/BAN/Assert.cpp
../BAN/BAN/New.cpp
@ -179,11 +178,11 @@ if(ENABLE_KERNEL_UBSAN)
endif()
if("${BANAN_ARCH}" STREQUAL "x86_64")
target_compile_options(kernel PUBLIC -mcmodel=kernel -mno-red-zone -mno-mmx)
target_compile_options(kernel PUBLIC -mcmodel=kernel -mno-red-zone)
target_link_options(kernel PUBLIC LINKER:-z,max-page-size=4096)
target_link_options(kernel PUBLIC LINKER:-T,${CMAKE_CURRENT_SOURCE_DIR}/arch/x86_64/linker.ld)
elseif("${BANAN_ARCH}" STREQUAL "i386")
target_link_options(kernel PUBLIC LINKER:-T,${CMAKE_CURRENT_SOURCE_DIR}/arch/i386/linker.ld)
elseif("${BANAN_ARCH}" STREQUAL "i686")
target_link_options(kernel PUBLIC LINKER:-T,${CMAKE_CURRENT_SOURCE_DIR}/arch/i686/linker.ld)
endif()
target_link_options(kernel PUBLIC -ffreestanding -nostdlib)

View File

@ -1,147 +0,0 @@
#include <BAN/Assert.h>
#include <kernel/GDT.h>
#include <string.h>
extern "C" uintptr_t g_boot_stack_top[0];
namespace Kernel::GDT
{
struct TaskStateSegment
{
uint16_t link;
uint16_t reserved1;
uint32_t esp0;
uint16_t ss0;
uint16_t reserved2;
uint32_t esp1;
uint16_t ss1;
uint16_t reserved3;
uint32_t esp2;
uint16_t ss2;
uint16_t reserved4;
uint32_t cr3;
uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ecx;
uint32_t edx;
uint32_t ebx;
uint32_t esp;
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint16_t es;
uint16_t reserved5;
uint16_t cs;
uint16_t reserved6;
uint16_t ss;
uint16_t reserved7;
uint16_t ds;
uint16_t reserved8;
uint16_t fs;
uint16_t reserved9;
uint16_t gs;
uint16_t reserved10;
uint16_t ldtr;
uint16_t reserved11;
uint16_t reserved12;
uint16_t iopb;
uint32_t ssp;
} __attribute__((packed));
union SegmentDescriptor
{
struct
{
uint16_t limit1;
uint16_t base1;
uint8_t base2;
uint8_t access;
uint8_t limit2 : 4;
uint8_t flags : 4;
uint8_t base3;
} __attribute__((packed));
struct
{
uint32_t low;
uint32_t high;
} __attribute__((packed));
} __attribute__((packed));
struct GDTR
{
uint16_t size;
uint32_t address;
} __attribute__((packed));
static TaskStateSegment* s_tss = nullptr;
static SegmentDescriptor* s_gdt = nullptr;
static GDTR s_gdtr;
static void write_entry(uint8_t offset, uint32_t base, uint32_t limit, uint8_t access, uint8_t flags)
{
SegmentDescriptor& desc = *(SegmentDescriptor*)((uintptr_t)s_gdt + offset);
desc.base1 = base;
desc.base2 = base >> 16;
desc.base3 = base >> 24;
desc.limit1 = limit;
desc.limit2 = limit >> 16;
desc.access = access;
desc.flags = flags;
}
static void write_tss(uint8_t offset)
{
s_tss = new TaskStateSegment();
ASSERT(s_tss);
memset(s_tss, 0x00, sizeof(TaskStateSegment));
s_tss->ss0 = 0x10;
s_tss->esp0 = (uintptr_t)g_boot_stack_top;
write_entry(offset, (uint32_t)s_tss, sizeof(TaskStateSegment), 0x89, 0x0);
}
void set_tss_stack(uintptr_t esp)
{
s_tss->esp0 = esp;
}
static void flush_gdt()
{
asm volatile("lgdt %0" :: "m"(s_gdtr));
}
extern "C" void flush_tss(uint16_t offset)
{
asm volatile("ltr %0" :: "m"(offset));
}
void initialize()
{
constexpr uint32_t descriptor_count = 6;
s_gdt = new SegmentDescriptor[descriptor_count];
ASSERT(s_gdt);
s_gdtr.address = (uint64_t)s_gdt;
s_gdtr.size = descriptor_count * sizeof(SegmentDescriptor) - 1;
write_entry(0x00, 0x00000000, 0x00000, 0x00, 0x0); // null
write_entry(0x08, 0x00000000, 0xFFFFF, 0x9A, 0xC); // kernel code
write_entry(0x10, 0x00000000, 0xFFFFF, 0x92, 0xC); // kernel data
write_entry(0x18, 0x00000000, 0xFFFFF, 0xFA, 0xC); // user code
write_entry(0x20, 0x00000000, 0xFFFFF, 0xF2, 0xC); // user data
write_tss(0x28);
flush_gdt();
flush_tss(0x28);
}
}

View File

@ -1,270 +0,0 @@
#include <BAN/Errors.h>
#include <kernel/IDT.h>
#include <kernel/InterruptController.h>
#include <kernel/Memory/kmalloc.h>
#include <kernel/Panic.h>
#include <kernel/Scheduler.h>
#define INTERRUPT_HANDLER____(i, msg) \
static void interrupt ## i () \
{ \
uint32_t eax, ebx, ecx, edx; \
uint32_t esp, ebp; \
uint32_t cr0, cr2, cr3, cr4; \
asm volatile("":"=a"(eax),"=b"(ebx),"=c"(ecx),"=d"(edx)); \
asm volatile("movl %%esp, %%eax":"=a"(esp)); \
asm volatile("movl %%ebp, %%eax":"=a"(ebp)); \
asm volatile("movl %%cr0, %%eax":"=a"(cr0)); \
asm volatile("movl %%cr2, %%eax":"=a"(cr2)); \
asm volatile("movl %%cr3, %%eax":"=a"(cr3)); \
asm volatile("movl %%cr4, %%eax":"=a"(cr4)); \
Kernel::panic(msg "\r\nRegister dump\r\n" \
"eax=0x{8H}, ebx=0x{8H}, ecx=0x{8H}, edx=0x{8H}\r\n" \
"esp=0x{8H}, ebp=0x{8H}\r\n" \
"CR0=0x{8H}, CR2=0x{8H}, CR3=0x{8H}, CR4=0x{8H}\r\n", \
eax, ebx, ecx, edx, esp, ebp, cr0, cr2, cr3, cr4); \
}
#define INTERRUPT_HANDLER_ERR(i, msg) \
static void interrupt ## i () \
{ \
uint32_t eax, ebx, ecx, edx; \
uint32_t esp, ebp; \
uint32_t cr0, cr2, cr3, cr4; \
uint32_t error_code; \
asm volatile("":"=a"(eax),"=b"(ebx),"=c"(ecx),"=d"(edx)); \
asm volatile("movl %%esp, %%eax":"=a"(esp)); \
asm volatile("movl %%ebp, %%eax":"=a"(ebp)); \
asm volatile("movl %%cr0, %%eax":"=a"(cr0)); \
asm volatile("movl %%cr2, %%eax":"=a"(cr2)); \
asm volatile("movl %%cr3, %%eax":"=a"(cr3)); \
asm volatile("movl %%cr4, %%eax":"=a"(cr4)); \
asm volatile("popl %%eax":"=a"(error_code)); \
Kernel::panic(msg " (error code: 0x{8H})\r\n" \
"Register dump\r\n" \
"eax=0x{8H}, ebx=0x{8H}, ecx=0x{8H}, edx=0x{8H}\r\n" \
"esp=0x{8H}, ebp=0x{8H}\r\n" \
"CR0=0x{8H}, CR2=0x{8H}, CR3=0x{8H}, CR4=0x{8H}\r\n", \
eax, ebx, ecx, edx, esp, ebp, cr0, cr2, cr3, cr4, error_code); \
}
#define REGISTER_HANDLER(i) register_interrupt_handler(i, interrupt ## i)
namespace IDT
{
struct GateDescriptor
{
uint16_t offset1;
uint16_t selector;
uint8_t reserved : 5;
uint8_t zero1 : 3;
uint8_t type : 4;
uint8_t zero2 : 1;
uint8_t DPL : 2;
uint8_t present : 1;
uint16_t offset2;
} __attribute__((packed));
struct IDTR
{
uint16_t size;
void* offset;
} __attribute((packed));
static IDTR s_idtr;
static GateDescriptor* s_idt = nullptr;
static void(*s_irq_handlers[16])() { nullptr };
INTERRUPT_HANDLER____(0x00, "Division Error")
INTERRUPT_HANDLER____(0x01, "Debug")
INTERRUPT_HANDLER____(0x02, "Non-maskable Interrupt")
INTERRUPT_HANDLER____(0x03, "Breakpoint")
INTERRUPT_HANDLER____(0x04, "Overflow")
INTERRUPT_HANDLER____(0x05, "Bound Range Exception")
INTERRUPT_HANDLER____(0x06, "Invalid Opcode")
INTERRUPT_HANDLER____(0x07, "Device Not Available")
INTERRUPT_HANDLER_ERR(0x08, "Double Fault")
INTERRUPT_HANDLER____(0x09, "Coprocessor Segment Overrun")
INTERRUPT_HANDLER_ERR(0x0A, "Invalid TSS")
INTERRUPT_HANDLER_ERR(0x0B, "Segment Not Present")
INTERRUPT_HANDLER_ERR(0x0C, "Stack-Segment Fault")
INTERRUPT_HANDLER_ERR(0x0D, "General Protection Fault")
INTERRUPT_HANDLER_ERR(0x0E, "Page Fault")
INTERRUPT_HANDLER____(0x0F, "Unknown Exception 0x0F")
INTERRUPT_HANDLER____(0x10, "x87 Floating-Point Exception")
INTERRUPT_HANDLER_ERR(0x11, "Alignment Check")
INTERRUPT_HANDLER____(0x12, "Machine Check")
INTERRUPT_HANDLER____(0x13, "SIMD Floating-Point Exception")
INTERRUPT_HANDLER____(0x14, "Virtualization Exception")
INTERRUPT_HANDLER_ERR(0x15, "Control Protection Exception")
INTERRUPT_HANDLER____(0x16, "Unknown Exception 0x16")
INTERRUPT_HANDLER____(0x17, "Unknown Exception 0x17")
INTERRUPT_HANDLER____(0x18, "Unknown Exception 0x18")
INTERRUPT_HANDLER____(0x19, "Unknown Exception 0x19")
INTERRUPT_HANDLER____(0x1A, "Unknown Exception 0x1A")
INTERRUPT_HANDLER____(0x1B, "Unknown Exception 0x1B")
INTERRUPT_HANDLER____(0x1C, "Hypervisor Injection Exception")
INTERRUPT_HANDLER_ERR(0x1D, "VMM Communication Exception")
INTERRUPT_HANDLER_ERR(0x1E, "Security Exception")
INTERRUPT_HANDLER____(0x1F, "Unkown Exception 0x1F")
extern "C" void handle_irq()
{
uint8_t irq;
for (uint32_t i = 0; i < 16; i++)
{
if (InterruptController::get().is_in_service(i))
{
irq = i;
goto found;
}
}
dprintln("Spurious irq");
return;
found:
if (s_irq_handlers[irq])
s_irq_handlers[irq]();
else
dprintln("no handler for irq 0x{2H}\n", irq);
// NOTE: Scheduler sends PIT eoi's
if (irq != PIT_IRQ)
InterruptController::get().eoi(irq);
Kernel::Scheduler::get().reschedule_if_idling();
}
extern "C" void handle_irq_common();
asm(
".globl handle_irq_common;"
"handle_irq_common:"
"pusha;"
"pushw %ds;"
"pushw %es;"
"pushw %ss;"
"pushw %ss;"
"popw %ds;"
"popw %es;"
"call handle_irq;"
"popw %es;"
"popw %ds;"
"popa;"
"iret;"
);
extern "C" void syscall_asm();
asm(
".global syscall_asm;"
"syscall_asm:"
"pusha;"
"pushw %ds;"
"pushw %es;"
"pushw %ss;"
"pushw %ss;"
"popw %ds;"
"popw %es;"
"pushl %edx;"
"pushl %ecx;"
"pushl %ebx;"
"pushl %eax;"
"call cpp_syscall_handler;"
"addl $16, %esp;"
"popw %es;"
"popw %ds;"
// NOTE: following instructions are same as in 'popa', except we skip eax
// since it holds the return value of the syscall.
"popl %edi;"
"popl %esi;"
"popl %ebp;"
"addl $4, %esp;"
"popl %ebx;"
"popl %edx;"
"popl %ecx;"
"addl $4, %esp;"
"iret;"
);
static void flush_idt()
{
asm volatile("lidt %0"::"m"(s_idtr));
}
static void register_interrupt_handler(uint8_t index, void(*f)())
{
GateDescriptor& descriptor = s_idt[index];
descriptor.offset1 = (uint32_t)f & 0xFFFF;
descriptor.selector = 0x08;
descriptor.type = 0xE;
descriptor.DPL = 0;
descriptor.present = 1;
descriptor.offset2 = (uint32_t)f >> 16;
}
void register_irq_handler(uint8_t irq, void(*f)())
{
s_irq_handlers[irq] = f;
register_interrupt_handler(IRQ_VECTOR_BASE + irq, handle_irq_common);
flush_idt();
}
void register_syscall_handler(uint8_t offset, void(*handler)())
{
register_interrupt_handler(offset, handler);
s_idt[offset].DPL = 3;
}
void initialize()
{
constexpr size_t idt_size = 0x100 * sizeof(GateDescriptor);
s_idt = (GateDescriptor*)kmalloc(idt_size);
ASSERT(s_idt);
memset(s_idt, 0x00, idt_size);
s_idtr.offset = s_idt;
s_idtr.size = idt_size - 1;
REGISTER_HANDLER(0x00);
REGISTER_HANDLER(0x01);
REGISTER_HANDLER(0x02);
REGISTER_HANDLER(0x03);
REGISTER_HANDLER(0x04);
REGISTER_HANDLER(0x05);
REGISTER_HANDLER(0x06);
REGISTER_HANDLER(0x07);
REGISTER_HANDLER(0x08);
REGISTER_HANDLER(0x09);
REGISTER_HANDLER(0x0A);
REGISTER_HANDLER(0x0B);
REGISTER_HANDLER(0x0C);
REGISTER_HANDLER(0x0D);
REGISTER_HANDLER(0x0E);
REGISTER_HANDLER(0x0F);
REGISTER_HANDLER(0x10);
REGISTER_HANDLER(0x11);
REGISTER_HANDLER(0x12);
REGISTER_HANDLER(0x13);
REGISTER_HANDLER(0x14);
REGISTER_HANDLER(0x15);
REGISTER_HANDLER(0x16);
REGISTER_HANDLER(0x17);
REGISTER_HANDLER(0x18);
REGISTER_HANDLER(0x19);
REGISTER_HANDLER(0x1A);
REGISTER_HANDLER(0x1B);
REGISTER_HANDLER(0x1C);
REGISTER_HANDLER(0x1D);
REGISTER_HANDLER(0x1E);
REGISTER_HANDLER(0x1F);
register_syscall_handler(0x80, syscall_asm);
flush_idt();
}
}

View File

@ -1,227 +0,0 @@
#include <BAN/Errors.h>
#include <kernel/Debug.h>
#include <kernel/Memory/MMU.h>
#include <kernel/Memory/kmalloc.h>
#include <string.h>
#define MMU_DEBUG_PRINT 0
// bits 31-12 set
#define PAGE_MASK 0xfffff000
#define FLAGS_MASK 0x00000fff
namespace Kernel
{
static MMU* s_instance = nullptr;
void MMU::initialize()
{
ASSERT(s_instance == nullptr);
s_instance = new MMU();
ASSERT(s_instance);
s_instance->initialize_kernel();
s_instance->load();
}
MMU& MMU::get()
{
ASSERT(s_instance);
return *s_instance;
}
static uint64_t* allocate_page_aligned_page()
{
uint64_t* page = (uint64_t*)kmalloc(PAGE_SIZE, PAGE_SIZE);
ASSERT(page);
ASSERT(((uintptr_t)page % PAGE_SIZE) == 0);
memset(page, 0, PAGE_SIZE);
return page;
}
void MMU::initialize_kernel()
{
m_highest_paging_struct = (uint64_t*)kmalloc(sizeof(uint64_t) * 4, 32);
ASSERT(m_highest_paging_struct);
ASSERT(((uintptr_t)m_highest_paging_struct % 32) == 0);
// allocate all page directories
for (int i = 0; i < 4; i++)
{
uint64_t* page_directory = allocate_page_aligned_page();
m_highest_paging_struct[i] = (uint64_t)page_directory | Flags::Present;
}
// FIXME: We should just identity map until g_kernel_end
// create and identity map first 6 MiB
uint64_t* page_directory1 = (uint64_t*)(m_highest_paging_struct[0] & PAGE_MASK);
for (uint64_t i = 0; i < 3; i++)
{
uint64_t* page_table = allocate_page_aligned_page();
for (uint64_t j = 0; j < 512; j++)
page_table[j] = (i << 21) | (j << 12) | Flags::ReadWrite | Flags::Present;
page_directory1[i] = (uint64_t)page_table | Flags::ReadWrite | Flags::Present;
}
// dont map first page (0 -> 4 KiB) so that nullptr dereference
// causes page fault :)
uint64_t* page_table1 = (uint64_t*)(page_directory1[0] & PAGE_MASK);
page_table1[0] = 0;
}
MMU::MMU()
{
if (s_instance == nullptr)
return;
// Here we copy the s_instances paging structs since they are
// global for every process
uint64_t* global_pdpt = s_instance->m_highest_paging_struct;
uint64_t* pdpt = (uint64_t*)kmalloc(sizeof(uint64_t) * 4, 32);
ASSERT(pdpt);
for (uint32_t pdpte = 0; pdpte < 4; pdpte++)
{
if (!(global_pdpt[pdpte] & Flags::Present))
continue;
uint64_t* global_pd = (uint64_t*)(global_pdpt[pdpte] & PAGE_MASK);
uint64_t* pd = allocate_page_aligned_page();
pdpt[pdpte] = (uint64_t)pd | (global_pdpt[pdpte] & ~PAGE_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(global_pd[pde] & Flags::Present))
continue;
uint64_t* global_pt = (uint64_t*)(global_pd[pde] & PAGE_MASK);
uint64_t* pt = allocate_page_aligned_page();
pd[pde] = (uint64_t)pt | (global_pd[pde] & ~PAGE_MASK);
memcpy(pt, global_pt, PAGE_SIZE);
}
}
m_highest_paging_struct = pdpt;
}
MMU::~MMU()
{
uint64_t* pdpt = m_highest_paging_struct;
for (uint32_t pdpte = 0; pdpte < 512; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
continue;
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
kfree((void*)(pd[pde] & PAGE_MASK));
}
kfree(pd);
}
kfree(pdpt);
}
void MMU::load()
{
asm volatile("movl %0, %%cr3" :: "r"(m_highest_paging_struct));
}
void MMU::map_page_at(paddr_t paddr, vaddr_t vaddr, uint8_t flags)
{
#if MMU_DEBUG_PRINT
dprintln("AllocatePage(0x{8H})", address);
#endif
ASSERT(flags & Flags::Present);
ASSERT(!(paddr & ~PAGE_MASK));
ASSERT(!(vaddr & ~PAGE_MASK));
uint32_t pdpte = (vaddr & 0xC0000000) >> 30;
uint32_t pde = (vaddr & 0x3FE00000) >> 21;
uint32_t pte = (vaddr & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
{
uint64_t* page_table = allocate_page_aligned_page();
page_directory[pde] = (uint64_t)page_table;
}
page_directory[pde] |= flags;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
page_table[pte] = paddr | flags;
}
void MMU::identity_map_page(paddr_t address, uint8_t flags)
{
address &= PAGE_MASK;
map_page_at(address, address, flags);
}
void MMU::identity_map_range(paddr_t address, ptrdiff_t size, uint8_t flags)
{
paddr_t s_page = address & PAGE_MASK;
paddr_t e_page = (address + size - 1) & PAGE_MASK;
for (paddr_t page = s_page; page <= e_page; page += PAGE_SIZE)
identity_map_page(page, flags);
}
void MMU::unmap_page(vaddr_t address)
{
#if MMU_DEBUG_PRINT
dprintln("UnAllocatePage(0x{8H})", address & PAGE_MASK);
#endif
uint32_t pdpte = (address & 0xC0000000) >> 30;
uint32_t pde = (address & 0x3FE00000) >> 21;
uint32_t pte = (address & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
return;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
if (!(page_table[pte] & Flags::Present))
return;
page_table[pte] = 0;
// TODO: Unallocate the page table if this was the only allocated page
}
void MMU::unmap_range(vaddr_t address, ptrdiff_t size)
{
uintptr_t s_page = address & PAGE_MASK;
uintptr_t e_page = (address + size - 1) & PAGE_MASK;
for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE)
unmap_page(page);
}
uint8_t MMU::get_page_flags(vaddr_t address) const
{
uint32_t pdpte = (address & 0xC0000000) >> 30;
uint32_t pde = (address & 0x3FE00000) >> 21;
uint32_t pte = (address & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
return 0;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
if (!(page_table[pte] & Flags::Present))
return 0;
return page_table[pte] & FLAGS_MASK;
}
}

View File

@ -1,19 +0,0 @@
.global spinlock_lock_asm
spinlock_lock_asm:
movl 4(%esp), %eax
lock; btsl $0, (%eax)
jnc .done
.retry:
pause
testl $1, (%eax)
jne .retry
lock; btsl $0, (%eax)
jc .retry
.done:
ret
.global spinlock_unlock_asm
spinlock_unlock_asm:
movl 4(%esp), %eax
movl $0, (%eax)
ret

View File

@ -1,47 +0,0 @@
# uint32_t read_rip()
.global read_rip
read_rip:
popl %eax
jmp *%eax
exit_thread_trampoline:
addl $4, %esp
pushl (%esp)
ret
# void start_thread(uint32_t esp, uint32_t eip)
.global start_thread
start_thread:
movl 8(%esp), %ecx
movl 4(%esp), %esp
movl $0, %ebp
pushl $exit_thread_trampoline
sti
jmp *%ecx
# void continue_thread(uint32_t rsp, uint32_t rip)
.global continue_thread
continue_thread:
movl 8(%esp), %ecx
movl 4(%esp), %esp
movl $0, %eax
jmp *%ecx
# void thread_jump_userspace(uint32_t rsp, uint32_t rip)
.global thread_jump_userspace
thread_jump_userspace:
movl $0x23, %eax
movw %ax, %ds
movw %ax, %es
movw %ax, %fs
movw %ax, %gs
movl 8(%esp), %ecx
movl 4(%esp), %esp
pushl $0x23
pushl %esp
pushfl
pushl $0x1B
pushl %ecx
iret

View File

@ -1,182 +0,0 @@
# Declare constants for the multiboot header
.set ALIGN, 1<<0 # align loaded modules on page boundaries
.set MEMINFO, 1<<1 # provide memory map
.set VIDEOINFO, 1<<2 # provide video info
.set MB_FLAGS, ALIGN | MEMINFO | VIDEOINFO # this is the Multiboot 'flag' field
.set MB_MAGIC, 0x1BADB002 # 'magic number' lets bootloader find the header
.set MB_CHECKSUM, -(MB_MAGIC + MB_FLAGS) #checksum of above, to prove we are multiboot
# Multiboot header
.section .multiboot, "aw"
.align 4
.long MB_MAGIC
.long MB_FLAGS
.long MB_CHECKSUM
.skip 20
.long 0
.long 800
.long 600
.long 32
.section .bss, "aw", @nobits
# Create stack
.global g_boot_stack_bottom
g_boot_stack_bottom:
.skip 16384
.global g_boot_stack_top
g_boot_stack_top:
# 0 MiB -> 1 MiB: bootloader stuff
# 1 MiB -> : kernel
.align 32
boot_page_directory_pointer_table:
.skip 4 * 8
.align 4096
boot_page_directory1:
.skip 512 * 8
.global g_kernel_cmdline
g_kernel_cmdline:
.skip 4096
.global g_multiboot_info
g_multiboot_info:
.skip 4
.global g_multiboot_magic
g_multiboot_magic:
.skip 4
.section .text
boot_gdt:
.quad 0x0000000000000000 # null
.quad 0x00CF9A000000FFFF # kernel code
.quad 0x00CF92000000FFFF # kernel data
boot_gdtr:
.short . - boot_gdt - 1
.long boot_gdt
has_cpuid:
pushfl
pushfl
xorl $0x00200000, (%esp)
popfl
pushfl
popl %eax
xorl (%esp), %eax
popfl
testl $0x00200000, %eax
ret
has_pae:
movl $0, %eax
cpuid
testl $(1 << 6), %edx
ret
has_sse:
movl $1, %eax
cpuid
testl $(1 << 25), %edx
ret
check_requirements:
call has_cpuid
jz .exit
call has_pae
jz .exit
call has_sse
jz .exit
ret
.exit:
jmp system_halt
copy_kernel_commandline:
pushl %esi
pushl %edi
movl g_multiboot_info, %esi
addl $16, %esi
movl (%esi), %esi
movl $1024, %ecx
movl $g_kernel_cmdline, %edi
rep movsl
popl %edi
popl %esi
ret
enable_sse:
movl %cr0, %eax
andw $0xFFFB, %ax
orw $0x0002, %ax
movl %eax, %cr0
movl %cr4, %eax
orw $0x0600, %ax
movl %eax, %cr4
ret
initialize_paging:
# identity map first 6 MiB
movl $(0x00000000 + 0x83), boot_page_directory1 + 0
movl $(0x00200000 + 0x83), boot_page_directory1 + 8
movl $(0x00400000 + 0x83), boot_page_directory1 + 16
movl $(boot_page_directory1 + 0x01), boot_page_directory_pointer_table
# enable PAE
movl %cr4, %ecx
orl $0x20, %ecx
movl %ecx, %cr4
# set address of paging structures
movl $boot_page_directory_pointer_table, %ecx
movl %ecx, %cr3
# enable paging
movl %cr0, %ecx
orl $0x80000000, %ecx
movl %ecx, %cr0
ret
initialize_gdt:
lgdt boot_gdtr
# flush gdt
movw $0x10, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %fs
movw %ax, %gs
movw %ax, %ss
jmp $0x08, $flush
flush:
ret
.global _start
.type _start, @function
_start:
# Initialize stack and multiboot info
movl $g_boot_stack_top, %esp
movl %eax, g_multiboot_magic
movl %ebx, g_multiboot_info
call copy_kernel_commandline
call check_requirements
call enable_sse
call initialize_paging
call initialize_gdt
call _init
# call to the kernel itself (clear ebp for stacktrace)
xorl %ebp, %ebp
call kernel_main
call _fini
system_halt:
xchgw %bx, %bx
cli
1: hlt
jmp 1b

View File

@ -1,28 +0,0 @@
ENTRY (_start)
SECTIONS
{
. = 0x00100000;
g_kernel_start = .;
.text BLOCK(4K) : ALIGN(4K)
{
*(.multiboot)
*(.text)
}
.rodata BLOCK(4K) : ALIGN(4K)
{
*(.rodata.*)
}
.data BLOCK(4K) : ALIGN(4K)
{
*(.data)
}
.bss BLOCK(4K) : ALIGN(4K)
{
*(COMMON)
*(.bss)
}
g_kernel_end = .;
}

View File

@ -0,0 +1,620 @@
#include <kernel/CPUID.h>
#include <kernel/Lock/SpinLock.h>
#include <kernel/Memory/kmalloc.h>
#include <kernel/Memory/PageTable.h>
extern uint8_t g_kernel_start[];
extern uint8_t g_kernel_end[];
extern uint8_t g_kernel_execute_start[];
extern uint8_t g_kernel_execute_end[];
extern uint8_t g_userspace_start[];
extern uint8_t g_userspace_end[];
namespace Kernel
{
RecursiveSpinLock PageTable::s_fast_page_lock;
static PageTable* s_kernel = nullptr;
static bool s_has_nxe = false;
static bool s_has_pge = false;
static paddr_t s_global_pdpte = 0;
static inline PageTable::flags_t parse_flags(uint64_t entry)
{
using Flags = PageTable::Flags;
PageTable::flags_t result = 0;
if (s_has_nxe && !(entry & (1ull << 63)))
result |= Flags::Execute;
if (entry & Flags::Reserved)
result |= Flags::Reserved;
if (entry & Flags::CacheDisable)
result |= Flags::CacheDisable;
if (entry & Flags::UserSupervisor)
result |= Flags::UserSupervisor;
if (entry & Flags::ReadWrite)
result |= Flags::ReadWrite;
if (entry & Flags::Present)
result |= Flags::Present;
return result;
}
void PageTable::initialize()
{
if (CPUID::has_nxe())
s_has_nxe = true;
if (CPUID::has_pge())
s_has_pge = true;
ASSERT(s_kernel == nullptr);
s_kernel = new PageTable();
ASSERT(s_kernel);
s_kernel->initialize_kernel();
s_kernel->initial_load();
}
void PageTable::initial_load()
{
if (s_has_nxe)
{
asm volatile(
"movl $0xC0000080, %%ecx;"
"rdmsr;"
"orl $0x800, %%eax;"
"wrmsr"
::: "eax", "ecx", "edx", "memory"
);
}
if (s_has_pge)
{
asm volatile(
"movl %%cr4, %%eax;"
"orl $0x80, %%eax;"
"movl %%eax, %%cr4;"
::: "eax"
);
}
// enable write protect
asm volatile(
"movl %%cr0, %%eax;"
"orl $0x10000, %%eax;"
"movl %%eax, %%cr0;"
::: "rax"
);
load();
}
PageTable& PageTable::kernel()
{
ASSERT(s_kernel);
return *s_kernel;
}
bool PageTable::is_valid_pointer(uintptr_t)
{
return true;
}
static uint64_t* allocate_zeroed_page_aligned_page()
{
void* page = kmalloc(PAGE_SIZE, PAGE_SIZE, true);
ASSERT(page);
memset(page, 0, PAGE_SIZE);
return (uint64_t*)page;
}
void PageTable::initialize_kernel()
{
ASSERT(s_global_pdpte == 0);
s_global_pdpte = V2P(allocate_zeroed_page_aligned_page());
map_kernel_memory();
prepare_fast_page();
// Map main bios area below 1 MiB
map_range_at(
0x000E0000,
P2V(0x000E0000),
0x00100000 - 0x000E0000,
PageTable::Flags::Present
);
// Map (phys_kernel_start -> phys_kernel_end) to (virt_kernel_start -> virt_kernel_end)
ASSERT((vaddr_t)g_kernel_start % PAGE_SIZE == 0);
map_range_at(
V2P(g_kernel_start),
(vaddr_t)g_kernel_start,
g_kernel_end - g_kernel_start,
Flags::ReadWrite | Flags::Present
);
// Map executable kernel memory as executable
map_range_at(
V2P(g_kernel_execute_start),
(vaddr_t)g_kernel_execute_start,
g_kernel_execute_end - g_kernel_execute_start,
Flags::Execute | Flags::Present
);
// Map userspace memory
map_range_at(
V2P(g_userspace_start),
(vaddr_t)g_userspace_start,
g_userspace_end - g_userspace_start,
Flags::Execute | Flags::UserSupervisor | Flags::Present
);
}
void PageTable::prepare_fast_page()
{
constexpr uint64_t pdpte = (fast_page() >> 30) & 0x1FF;
constexpr uint64_t pde = (fast_page() >> 21) & 0x1FF;
constexpr uint64_t pte = (fast_page() >> 12) & 0x1FF;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
ASSERT(pdpt[pdpte] & Flags::Present);
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte]) & PAGE_ADDR_MASK);
ASSERT(!(pd[pde] & Flags::Present));
pd[pde] = V2P(allocate_zeroed_page_aligned_page()) | Flags::ReadWrite | Flags::Present;
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde]) & PAGE_ADDR_MASK);
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = V2P(allocate_zeroed_page_aligned_page());
}
void PageTable::map_fast_page(paddr_t paddr)
{
ASSERT(s_kernel);
ASSERT(paddr);
SpinLockGuard _(s_fast_page_lock);
constexpr uint64_t pdpte = (fast_page() >> 30) & 0x1FF;
constexpr uint64_t pde = (fast_page() >> 21) & 0x1FF;
constexpr uint64_t pte = (fast_page() >> 12) & 0x1FF;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(s_kernel->m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = paddr | Flags::ReadWrite | Flags::Present;
invalidate(fast_page());
}
void PageTable::unmap_fast_page()
{
ASSERT(s_kernel);
SpinLockGuard _(s_fast_page_lock);
constexpr uint64_t pdpte = (fast_page() >> 30) & 0x1FF;
constexpr uint64_t pde = (fast_page() >> 21) & 0x1FF;
constexpr uint64_t pte = (fast_page() >> 12) & 0x1FF;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(s_kernel->m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
ASSERT(pt[pte] & Flags::Present);
pt[pte] = 0;
invalidate(fast_page());
}
BAN::ErrorOr<PageTable*> PageTable::create_userspace()
{
SpinLockGuard _(s_kernel->m_lock);
PageTable* page_table = new PageTable;
if (page_table == nullptr)
return BAN::Error::from_errno(ENOMEM);
page_table->map_kernel_memory();
return page_table;
}
void PageTable::map_kernel_memory()
{
ASSERT(s_kernel);
ASSERT(s_global_pdpte);
ASSERT(m_highest_paging_struct == 0);
m_highest_paging_struct = V2P(kmalloc(32, 32, true));
ASSERT(m_highest_paging_struct);
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
pdpt[0] = 0;
pdpt[1] = 0;
pdpt[2] = 0;
pdpt[3] = s_global_pdpte | Flags::Present;
static_assert(KERNEL_OFFSET == 0xC0000000);
}
PageTable::~PageTable()
{
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
for (uint32_t pdpte = 0; pdpte < 3; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
continue;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
kfree(reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK)));
}
kfree(pd);
}
kfree(pdpt);
}
void PageTable::load()
{
SpinLockGuard _(m_lock);
ASSERT(m_highest_paging_struct < 0x100000000);
const uint32_t pdpt_lo = m_highest_paging_struct;
asm volatile("movl %0, %%cr3" :: "r"(pdpt_lo));
Processor::set_current_page_table(this);
}
void PageTable::invalidate(vaddr_t vaddr)
{
ASSERT(vaddr % PAGE_SIZE == 0);
asm volatile("invlpg (%0)" :: "r"(vaddr) : "memory");
}
void PageTable::unmap_page(vaddr_t vaddr)
{
ASSERT(vaddr);
ASSERT(vaddr % PAGE_SIZE == 0);
ASSERT(vaddr != fast_page());
if (vaddr >= KERNEL_OFFSET)
ASSERT(vaddr >= (vaddr_t)g_kernel_start);
if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel))
Kernel::panic("unmapping {8H}, kernel: {}", vaddr, this == s_kernel);
const uint64_t pdpte = (vaddr >> 30) & 0x1FF;
const uint64_t pde = (vaddr >> 21) & 0x1FF;
const uint64_t pte = (vaddr >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
if (is_page_free(vaddr))
{
dwarnln("unmapping unmapped page {8H}", vaddr);
return;
}
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
pt[pte] = 0;
invalidate(vaddr);
}
void PageTable::unmap_range(vaddr_t vaddr, size_t size)
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
unmap_page(page * PAGE_SIZE);
}
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel))
Kernel::panic("mapping {8H} to {8H}, kernel: {}", paddr, vaddr, this == s_kernel);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
ASSERT(flags & Flags::Used);
const uint64_t pdpte = (vaddr >> 30) & 0x1FF;
const uint64_t pde = (vaddr >> 21) & 0x1FF;
const uint64_t pte = (vaddr >> 12) & 0x1FF;
uint64_t extra_flags = 0;
if (s_has_pge && vaddr >= KERNEL_OFFSET) // Map kernel memory as global
extra_flags |= 1ull << 8;
if (s_has_nxe && !(flags & Flags::Execute))
extra_flags |= 1ull << 63;
if (flags & Flags::Reserved)
extra_flags |= Flags::Reserved;
if (flags & Flags::CacheDisable)
extra_flags |= Flags::CacheDisable;
// NOTE: we add present here, since it has to be available in higher level structures
flags_t uwr_flags = (flags & (Flags::UserSupervisor | Flags::ReadWrite)) | Flags::Present;
SpinLockGuard _(m_lock);
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
if (!(pdpt[pdpte] & Flags::Present))
pdpt[pdpte] = V2P(allocate_zeroed_page_aligned_page()) | Flags::Present;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
if ((pd[pde] & uwr_flags) != uwr_flags)
{
if (!(pd[pde] & Flags::Present))
pd[pde] = V2P(allocate_zeroed_page_aligned_page());
pd[pde] |= uwr_flags;
}
if (!(flags & Flags::Present))
uwr_flags &= ~Flags::Present;
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
pt[pte] = paddr | uwr_flags | extra_flags;
invalidate(vaddr);
}
void PageTable::map_range_at(paddr_t paddr, vaddr_t vaddr, size_t size, flags_t flags)
{
ASSERT(vaddr);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
size_t page_count = range_page_count(vaddr, size);
SpinLockGuard _(m_lock);
for (size_t page = 0; page < page_count; page++)
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags);
}
uint64_t PageTable::get_page_data(vaddr_t vaddr) const
{
ASSERT(vaddr % PAGE_SIZE == 0);
const uint64_t pdpte = (vaddr >> 30) & 0x1FF;
const uint64_t pde = (vaddr >> 21) & 0x1FF;
const uint64_t pte = (vaddr >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
uint64_t* pdpt = (uint64_t*)P2V(m_highest_paging_struct);
if (!(pdpt[pdpte] & Flags::Present))
return 0;
uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK);
if (!(pd[pde] & Flags::Present))
return 0;
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
if (!(pt[pte] & Flags::Used))
return 0;
return pt[pte];
}
PageTable::flags_t PageTable::get_page_flags(vaddr_t vaddr) const
{
return parse_flags(get_page_data(vaddr));
}
paddr_t PageTable::physical_address_of(vaddr_t vaddr) const
{
uint64_t page_data = get_page_data(vaddr);
return (page_data & PAGE_ADDR_MASK) & ~(1ull << 63);
}
bool PageTable::is_page_free(vaddr_t vaddr) const
{
ASSERT(vaddr % PAGE_SIZE == 0);
return !(get_page_flags(vaddr) & Flags::Used);
}
bool PageTable::is_range_free(vaddr_t vaddr, size_t size) const
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
if (!is_page_free(page * PAGE_SIZE))
return false;
return true;
}
bool PageTable::reserve_page(vaddr_t vaddr, bool only_free)
{
SpinLockGuard _(m_lock);
ASSERT(vaddr % PAGE_SIZE == 0);
if (only_free && !is_page_free(vaddr))
return false;
map_page_at(0, vaddr, Flags::Reserved);
return true;
}
bool PageTable::reserve_range(vaddr_t vaddr, size_t bytes, bool only_free)
{
if (size_t rem = bytes % PAGE_SIZE)
bytes += PAGE_SIZE - rem;
ASSERT(vaddr % PAGE_SIZE == 0);
SpinLockGuard _(m_lock);
if (only_free && !is_range_free(vaddr, bytes))
return false;
for (size_t offset = 0; offset < bytes; offset += PAGE_SIZE)
reserve_page(vaddr + offset);
return true;
}
vaddr_t PageTable::reserve_free_page(vaddr_t first_address, vaddr_t last_address)
{
if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_end)
first_address = (vaddr_t)g_kernel_end;
if (size_t rem = first_address % PAGE_SIZE)
first_address += PAGE_SIZE - rem;
if (size_t rem = last_address % PAGE_SIZE)
last_address -= rem;
const uint32_t s_pdpte = (first_address >> 30) & 0x1FF;
const uint32_t s_pde = (first_address >> 21) & 0x1FF;
const uint32_t s_pte = (first_address >> 12) & 0x1FF;
const uint32_t e_pdpte = (last_address >> 30) & 0x1FF;
const uint32_t e_pde = (last_address >> 21) & 0x1FF;
const uint32_t e_pte = (last_address >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
// Try to find free page that can be mapped without
// allocations (page table with unused entries)
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
for (uint32_t pdpte = s_pdpte; pdpte < 4; pdpte++)
{
if (pdpte > e_pdpte)
break;
if (!(pdpt[pdpte] & Flags::Present))
continue;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
for (uint32_t pde = s_pde; pde < 512; pde++)
{
if (pdpte == e_pdpte && pde > e_pde)
break;
if (!(pd[pde] & Flags::Present))
continue;
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
for (uint32_t pte = s_pte; pte < 512; pte++)
{
if (pdpte == e_pdpte && pde == e_pde && pte >= e_pte)
break;
if (!(pt[pte] & Flags::Used))
{
vaddr_t vaddr = 0;
vaddr |= (vaddr_t)pdpte << 30;
vaddr |= (vaddr_t)pde << 21;
vaddr |= (vaddr_t)pte << 12;
ASSERT(reserve_page(vaddr));
return vaddr;
}
}
}
}
// Find any free page
for (vaddr_t vaddr = first_address; vaddr < last_address; vaddr += PAGE_SIZE)
{
if (is_page_free(vaddr))
{
ASSERT(reserve_page(vaddr));
return vaddr;
}
}
ASSERT_NOT_REACHED();
}
vaddr_t PageTable::reserve_free_contiguous_pages(size_t page_count, vaddr_t first_address, vaddr_t last_address)
{
if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_start)
first_address = (vaddr_t)g_kernel_start;
if (size_t rem = first_address % PAGE_SIZE)
first_address += PAGE_SIZE - rem;
if (size_t rem = last_address % PAGE_SIZE)
last_address -= rem;
SpinLockGuard _(m_lock);
for (vaddr_t vaddr = first_address; vaddr < last_address;)
{
bool valid { true };
for (size_t page = 0; page < page_count; page++)
{
if (!is_page_free(vaddr + page * PAGE_SIZE))
{
vaddr += (page + 1) * PAGE_SIZE;
valid = false;
break;
}
}
if (valid)
{
ASSERT(reserve_range(vaddr, page_count * PAGE_SIZE));
return vaddr;
}
}
ASSERT_NOT_REACHED();
}
static void dump_range(vaddr_t start, vaddr_t end, PageTable::flags_t flags)
{
if (start == 0)
return;
dprintln("{}-{}: {}{}{}{}",
(void*)(start), (void*)(end - 1),
flags & PageTable::Flags::Execute ? 'x' : '-',
flags & PageTable::Flags::UserSupervisor ? 'u' : '-',
flags & PageTable::Flags::ReadWrite ? 'w' : '-',
flags & PageTable::Flags::Present ? 'r' : '-'
);
}
void PageTable::debug_dump()
{
SpinLockGuard _(m_lock);
flags_t flags = 0;
vaddr_t start = 0;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
for (uint32_t pdpte = 0; pdpte < 4; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
{
dump_range(start, (pdpte << 30), flags);
start = 0;
continue;
}
uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK);
for (uint64_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
{
dump_range(start, (pdpte << 30) | (pde << 21), flags);
start = 0;
continue;
}
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
for (uint64_t pte = 0; pte < 512; pte++)
{
if (parse_flags(pt[pte]) != flags)
{
dump_range(start, (pdpte << 30) | (pde << 21) | (pte << 12), flags);
start = 0;
}
if (!(pt[pte] & Flags::Used))
continue;
if (start == 0)
{
flags = parse_flags(pt[pte]);
start = (pdpte << 30) | (pde << 21) | (pte << 12);
}
}
}
}
}
}

31
kernel/arch/i686/Signal.S Normal file
View File

@ -0,0 +1,31 @@
.section .userspace, "aw"
// stack contains
// return address
// signal number
// signal handler
.global signal_trampoline
signal_trampoline:
ud2
pushl %ebp
movl %esp, %ebp
subl $8, %esp
pusha
movl 40(%esp), %edi
movl 36(%esp), %eax
subl $12, %esp
pushl %edi
call *%eax
addl $16, %esp
popa
leave
addl $8, %esp
ret

View File

@ -0,0 +1,31 @@
.global sys_fork_trampoline
sys_fork_trampoline:
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi
call read_ip
testl %eax, %eax
jz .reload_stack
movl %esp, %ebx
subl $8, %esp
pushl %eax
pushl %ebx
call sys_fork
addl $16, %esp
.done:
popl %edi
popl %esi
popl %ebx
popl %ebp
ret
.reload_stack:
call get_thread_start_sp
movl %eax, %esp
xorl %eax, %eax
jmp .done

68
kernel/arch/i686/Thread.S Normal file
View File

@ -0,0 +1,68 @@
# uint32_t read_ip()
.global read_ip
read_ip:
popl %eax
jmp *%eax
# void start_kernel_thread()
.global start_kernel_thread
start_kernel_thread:
call get_thread_start_sp
movl %eax, %esp
# STACK LAYOUT
# on_exit arg
# on_exit func
# entry arg
# entry func
movl 4(%esp), %edi
movl 0(%esp), %esi
subl $12, %esp
pushl %edi
sti
call *%esi
addl $16, %esp
movl 12(%esp), %edi
movl 8(%esp), %esi
subl $12, %esp
pushl %edi
call *%esi
addl $16, %esp
.global start_userspace_thread
start_userspace_thread:
call get_thread_start_sp
movl %eax, %esp
# STACK LAYOUT
# entry
# argc
# argv
# envp
# userspace stack
call get_userspace_thread_stack_top
movw $(0x20 | 3), %bx
movw %bx, %ds
movw %bx, %es
movw %bx, %fs
movw %bx, %gs
xorw %bx, %bx
popl %edx
popl %esi
popl %edi
popl %ecx
pushl $(0x20 | 3)
pushl %eax
pushl $0x202
pushl $(0x18 | 3)
pushl %ecx
iret

296
kernel/arch/i686/boot.S Normal file
View File

@ -0,0 +1,296 @@
.set PG_PRESENT, 1<<0
.set PG_READ_WRITE, 1<<1
.set PG_PAGE_SIZE, 1<<7
.set FB_WIDTH, 800
.set FB_HEIGHT, 600
.set FB_BPP, 32
#define KERNEL_OFFSET 0xC0000000
#define V2P(vaddr) ((vaddr) - KERNEL_OFFSET)
.code32
# multiboot2 header
.section .multiboot, "aw"
.align 8
multiboot2_start:
.long 0xE85250D6
.long 0
.long multiboot2_end - multiboot2_start
.long -(0xE85250D6 + (multiboot2_end - multiboot2_start))
# framebuffer tag
.align 8
.short 5
.short 0
.long 20
.long FB_WIDTH
.long FB_HEIGHT
.long FB_BPP
# legacy start
.align 8
.short 3
.short 0
.long 12
.long V2P(_start)
.align 8
.short 0
.short 0
.long 8
multiboot2_end:
.section .bananboot, "aw"
.align 8
bananboot_start:
.long 0xBABAB007
.long -(0xBABAB007 + FB_WIDTH + FB_HEIGHT + FB_BPP)
.long FB_WIDTH
.long FB_HEIGHT
.long FB_BPP
bananboot_end:
.section .bss, "aw", @nobits
.align 4096
boot_stack_bottom:
.skip 4096 * 4
boot_stack_top:
.global g_kernel_cmdline
g_kernel_cmdline:
.skip 4096
bootloader_magic:
.skip 8
bootloader_info:
.skip 8
.section .data
# Map first GiB to 0x00000000 and 0xC0000000
.align 32
boot_pdpt:
.long V2P(boot_pd) + (PG_PRESENT)
.long 0
.quad 0
.quad 0
.long V2P(boot_pd) + (PG_PRESENT)
.long 0
.align 4096
boot_pd:
.set i, 0
.rept 512
.long i + (PG_PAGE_SIZE | PG_READ_WRITE | PG_PRESENT)
.long 0
.set i, i + 0x200000
.endr
boot_gdt:
.quad 0x0000000000000000 # null descriptor
.quad 0x00CF9A000000FFFF # kernel code
.quad 0x00CF92000000FFFF # kernel data
boot_gdtr:
.short . - boot_gdt - 1
.long V2P(boot_gdt)
.global g_ap_startup_done
g_ap_startup_done:
.byte 0
.global g_ap_running_count
g_ap_running_count:
.byte 0
.global g_ap_stack_loaded
g_ap_stack_loaded:
.byte 0
.section .text
has_cpuid:
pushfl
pushfl
xorl $0x00200000, (%esp)
popfl
pushfl
popl %eax
xorl (%esp), %eax
popfl
testl $0x00200000, %eax
ret
has_pae:
movl $0, %eax
cpuid
testl $(1 << 6), %edx
ret
has_sse:
movl $1, %eax
cpuid
testl $(1 << 25), %edx
ret
check_requirements:
call has_cpuid
jz .exit
call has_pae
jz .exit
call has_sse
jz .exit
ret
.exit:
jmp system_halt
enable_sse:
movl %cr0, %eax
andw $0xFFFB, %ax
orw $0x0002, %ax
movl %eax, %cr0
movl %cr4, %eax
orw $0x0600, %ax
movl %eax, %cr4
ret
initialize_paging:
# enable PAE
movl %cr4, %ecx
orl $(1 << 5), %ecx
movl %ecx, %cr4
# load page tables
movl $V2P(boot_pdpt), %ecx
movl %ecx, %cr3
# enable paging
movl %cr0, %ecx
orl $(1 << 31), %ecx
movl %ecx, %cr0
ret
.global _start
.type _start, @function
_start:
cli; cld
# save bootloader magic and info
movl %eax, V2P(bootloader_magic)
movl %ebx, V2P(bootloader_info)
# load boot stack
movl $V2P(boot_stack_top), %esp
# load boot GDT
lgdt V2P(boot_gdtr)
ljmpl $0x08, $V2P(gdt_flush)
gdt_flush:
# set correct segment registers
movw $0x10, %ax
movw %ax, %ds
movw %ax, %ss
movw %ax, %es
# do processor initialization
call check_requirements
call enable_sse
call initialize_paging
# load higher half stack pointer
movl $boot_stack_top, %esp
# jump to higher half
leal higher_half, %ecx
jmp *%ecx
higher_half:
# call global constuctors
call _init
# call to the kernel itself (clear ebp for stacktrace)
xorl %ebp, %ebp
subl $8, %esp
pushl bootloader_info
pushl bootloader_magic
call kernel_main
addl $16, %esp
# call global destructors
call _fini
system_halt:
xchgw %bx, %bx
cli
1: hlt
jmp 1b
.section .ap_init, "ax"
.code16
.global ap_trampoline
ap_trampoline:
jmp 1f
.align 8
ap_stack_ptr:
.skip 4
1:
cli; cld
ljmpl $0x00, $ap_cs_clear
ap_cs_clear:
# load ap gdt and enter protected mode
lgdt ap_gdtr
movl %cr0, %eax
orb $1, %al
movl %eax, %cr0
ljmpl $0x08, $ap_protected_mode
.code32
ap_protected_mode:
movw $0x10, %ax
movw %ax, %ds
movw %ax, %ss
movw %ax, %es
movl ap_stack_ptr, %esp
movb $1, V2P(g_ap_stack_loaded)
call V2P(enable_sse)
call V2P(initialize_paging)
# load boot gdt and enter long mode
lgdt V2P(boot_gdtr)
ljmpl $0x08, $ap_flush_gdt
ap_flush_gdt:
# move stack pointer to higher half
movl %esp, %esp
addl $KERNEL_OFFSET, %esp
# jump to higher half
leal ap_higher_half, %ecx
jmp *%ecx
ap_higher_half:
# clear rbp for stacktrace
xorl %ebp, %ebp
1: pause
cmpb $0, g_ap_startup_done
jz 1b
lock incb g_ap_running_count
call ap_main
jmp system_halt
ap_gdt:
.quad 0x0000000000000000 # null descriptor
.quad 0x00CF9A000000FFFF # 32 bit code
.quad 0x00CF92000000FFFF # 32 bit data
ap_gdtr:
.short . - ap_gdt - 1
.long ap_gdt

View File

@ -0,0 +1,213 @@
.macro push_userspace
pushw %gs
pushw %fs
pushw %es
pushw %ds
pushal
.endm
.macro load_kernel_segments
movw $0x10, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %fs
movw $0x28, %ax
movw %ax, %gs
.endm
.macro pop_userspace
popal
popw %ds
popw %es
popw %fs
popw %gs
.endm
.macro pop_userspace_skip_eax
popl %edi
popl %esi
popl %ebp
addl $4, %esp
popl %ebx
popl %edx
popl %ecx
addl $4, %esp
popw %ds
popw %es
popw %fs
popw %gs
.endm
isr_stub:
push_userspace
load_kernel_segments
movl %cr0, %eax; pushl %eax
movl %cr2, %eax; pushl %eax
movl %cr3, %eax; pushl %eax
movl %cr4, %eax; pushl %eax
movl %esp, %eax // register ptr
leal 64(%esp), %ebx // interrupt stack ptr
movl 60(%esp), %ecx // error code
movl 56(%esp), %edx // isr number
subl $12, %esp
pushl %eax
pushl %ebx
pushl %ecx
pushl %edx
call cpp_isr_handler
addl $44, %esp
pop_userspace
addl $8, %esp
iret
irq_stub:
push_userspace
load_kernel_segments
movl 40(%esp), %eax # interrupt number
subl $12, %esp
pushl %eax
call cpp_irq_handler
addl $16, %esp
pop_userspace
addl $8, %esp
iret
.global asm_reschedule_handler
asm_reschedule_handler:
push_userspace
load_kernel_segments
movl %esp, %eax # interrupt registers ptr
leal 40(%esp), %ebx # interrupt stack ptr
subl $12, %esp
pushl %eax
pushl %ebx
call cpp_reschedule_handler
addl $20, %esp
pop_userspace
iret
// arguments in EAX, EBX, ECX, EDX, ESI, EDI
.global syscall_asm
syscall_asm:
push_userspace
subl $8, %esp
pushl %esp
addl $48, (%esp)
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
pushl %eax
load_kernel_segments
call cpp_syscall_handler
addl $36, %esp
pop_userspace_skip_eax
iret
.macro isr n
.global isr\n
isr\n:
pushl $0
pushl $\n
jmp isr_stub
.endm
.macro isr_err n
.global isr\n
isr\n:
pushl $\n
jmp isr_stub
.endm
.macro irq n
.global irq\n
irq\n:
pushl $0
pushl $\n
jmp irq_stub
.endm
isr 0
isr 1
isr 2
isr 3
isr 4
isr 5
isr 6
isr 7
isr_err 8
isr 9
isr_err 10
isr_err 11
isr_err 12
isr_err 13
isr_err 14
isr 15
isr 16
isr_err 17
isr 18
isr 19
isr 20
isr 21
isr 22
isr 23
isr 24
isr 25
isr 26
isr 27
isr 28
isr 29
isr 30
isr 31
irq 0
irq 1
irq 2
irq 3
irq 4
irq 5
irq 6
irq 7
irq 8
irq 9
irq 10
irq 11
irq 12
irq 13
irq 14
irq 15
irq 16
irq 17
irq 18
irq 19
irq 20
irq 21
irq 22
irq 23
irq 24
irq 25
irq 26
irq 27
irq 28
irq 29
irq 30
irq 31

View File

@ -0,0 +1,45 @@
ENTRY (_start)
KERNEL_OFFSET = 0xC0000000;
SECTIONS
{
. = 0xF000;
.ap_init ALIGN(4K) : AT(ADDR(.ap_init))
{
g_ap_init_addr = .;
*(.ap_init)
}
. = 0x00100000 + KERNEL_OFFSET;
g_kernel_start = .;
.text ALIGN(4K) : AT(ADDR(.text) - KERNEL_OFFSET)
{
g_kernel_execute_start = .;
*(.multiboot)
*(.bananboot)
*(.text.*)
}
.userspace ALIGN(4K) : AT(ADDR(.userspace) - KERNEL_OFFSET)
{
g_userspace_start = .;
*(.userspace)
g_userspace_end = .;
g_kernel_execute_end = .;
}
.rodata ALIGN(4K) : AT(ADDR(.rodata) - KERNEL_OFFSET)
{
*(.rodata.*)
}
.data ALIGN(4K) : AT(ADDR(.data) - KERNEL_OFFSET)
{
*(.data)
}
.bss ALIGN(4K) : AT(ADDR(.bss) - KERNEL_OFFSET)
{
*(COMMON)
*(.bss)
}
g_kernel_end = .;
}

View File

@ -1,56 +0,0 @@
#include <kernel/GDT.h>
#include <kernel/Debug.h>
#include <string.h>
namespace Kernel
{
GDT* GDT::create()
{
auto* gdt = new GDT();
ASSERT(gdt);
gdt->write_entry(0x00, 0x00000000, 0x00000, 0x00, 0x0); // null
gdt->write_entry(0x08, 0x00000000, 0xFFFFF, 0x9A, 0xA); // kernel code
gdt->write_entry(0x10, 0x00000000, 0xFFFFF, 0x92, 0xC); // kernel data
gdt->write_entry(0x18, 0x00000000, 0xFFFFF, 0xFA, 0xA); // user code
gdt->write_entry(0x20, 0x00000000, 0xFFFFF, 0xF2, 0xC); // user data
gdt->write_tss();
return gdt;
}
void GDT::write_entry(uint8_t offset, uint32_t base, uint32_t limit, uint8_t access, uint8_t flags)
{
ASSERT(offset % sizeof(SegmentDescriptor) == 0);
uint8_t idx = offset / sizeof(SegmentDescriptor);
auto& desc = m_gdt[idx];
desc.base1 = (base >> 0) & 0xFFFF;
desc.base2 = (base >> 16) & 0xFF;
desc.base3 = (base >> 24) & 0xFF;
desc.limit1 = (limit >> 0) & 0xFFFF;
desc.limit2 = (limit >> 16) & 0x0F;
desc.access = access & 0xFF;
desc.flags = flags & 0x0F;
}
void GDT::write_tss()
{
memset(&m_tss, 0x00, sizeof(TaskStateSegment));
m_tss.iopb = sizeof(TaskStateSegment);
uint64_t base = reinterpret_cast<uint64_t>(&m_tss);
write_entry(0x28, (uint32_t)base, sizeof(TaskStateSegment), 0x89, 0x0);
auto& desc = m_gdt[0x30 / sizeof(SegmentDescriptor)];
desc.low = base >> 32;
desc.high = 0;
}
}

View File

@ -6,13 +6,16 @@ sys_fork_trampoline:
pushq %r13
pushq %r14
pushq %r15
call read_rip
call read_ip
testq %rax, %rax
je .done
je .reload_stack
movq %rax, %rsi
movq %rsp, %rdi
call sys_fork
.done:
.done:
popq %r15
popq %r14
popq %r13
@ -20,3 +23,9 @@ sys_fork_trampoline:
popq %rbp
popq %rbx
ret
.reload_stack:
call get_thread_start_sp
movq %rax, %rsp
xorq %rax, %rax
jmp .done

View File

@ -1,39 +1,52 @@
# uint64_t read_rip()
.global read_rip
read_rip:
# uint64_t read_ip()
.global read_ip
read_ip:
popq %rax
jmp *%rax
exit_thread_trampoline:
# void start_kernel_thread()
.global start_kernel_thread
start_kernel_thread:
call get_thread_start_sp
movq %rax, %rsp
# STACK LAYOUT
# on_exit arg
# on_exit func
# entry arg
# entry func
movq 8(%rsp), %rdi
ret
# void start_thread(uint64_t rsp, uint64_t rip)
.global start_thread
start_thread:
movq %rdi, %rsp
popq %rdi
movq $0, %rbp
pushq $exit_thread_trampoline
movq 0(%rsp), %rsi
sti
jmp *%rsi
call *%rsi
# void continue_thread(uint64_t rsp, uint64_t rip)
.global continue_thread
continue_thread:
movq %rdi, %rsp
movq $0, %rax
jmp *%rsi
movq 24(%rsp), %rdi
movq 16(%rsp), %rsi
call *%rsi
# void thread_userspace_trampoline(uint64_t rsp, uint64_t rip, int argc, char** argv, char** envp)
.global thread_userspace_trampoline
thread_userspace_trampoline:
pushq $0x23
pushq %rdi
pushfq
pushq $0x1B
pushq %rsi
movq %rdx, %rdi
movq %rcx, %rsi
movq %r8, %rdx
.global start_userspace_thread
start_userspace_thread:
call get_thread_start_sp
movq %rax, %rsp
# STACK LAYOUT
# entry
# argc
# argv
# envp
# userspace stack
call get_userspace_thread_stack_top
popq %rdx
popq %rsi
popq %rdi
popq %rcx
pushq $(0x20 | 3)
pushq %rax
pushq $0x202
pushq $(0x18 | 3)
pushq %rcx
iretq

View File

@ -249,10 +249,7 @@ ap_stack_ptr:
1:
cli; cld
ljmpl $0x00, $ap_cs_clear
ap_cs_clear:
xorw %ax, %ax
movw %ax, %ds
# load ap gdt and enter protected mode
lgdt ap_gdtr

View File

@ -1,11 +1,11 @@
.macro pushaq
pushq %rax
pushq %rbx
pushq %rcx
pushq %rdx
pushq %rbx
pushq %rbp
pushq %rdi
pushq %rsi
pushq %rdi
pushq %r8
pushq %r9
pushq %r10
@ -25,12 +25,12 @@
popq %r10
popq %r9
popq %r8
popq %rsi
popq %rdi
popq %rsi
popq %rbp
popq %rbx
popq %rdx
popq %rcx
popq %rbx
popq %rax
.endm
@ -43,44 +43,36 @@
popq %r10
popq %r9
popq %r8
popq %rsi
popq %rdi
popq %rsi
popq %rbp
popq %rbx
popq %rdx
popq %rcx
popq %rbx
.endm
isr_stub:
pushaq
movq %cr0, %rax; pushq %rax
movq %cr2, %rax; pushq %rax
movq %cr3, %rax; pushq %rax
movq %cr4, %rax; pushq %rax
movq 184(%rsp), %rax; pushq %rax
movq 176(%rsp), %rax; pushq %rax
movq 208(%rsp), %rax; pushq %rax
movq 176(%rsp), %rdi
movq 184(%rsp), %rsi
movq %rsp, %rdx
addq $192, %rdx
movq %rsp, %rcx
movq %cr0, %rax; pushq %rax
movq %cr2, %rax; pushq %rax
movq %cr3, %rax; pushq %rax
movq %cr4, %rax; pushq %rax
movq 152(%rsp), %rdi // isr number
movq 160(%rsp), %rsi // error code
leaq 168(%rsp), %rdx // interrupt stack ptr
movq %rsp, %rcx // register ptr
call cpp_isr_handler
addq $56, %rsp
addq $32, %rsp
popaq
addq $16, %rsp
iretq
irq_stub:
pushaq
movq 0x78(%rsp), %rdi # irq number
movq %rsp, %rsi
addq $136, %rsi
movq 120(%rsp), %rdi # irq number
call cpp_irq_handler
popaq
addq $16, %rsp
@ -174,7 +166,15 @@ irq 28
irq 29
irq 30
irq 31
irq 32
.global asm_reschedule_handler
asm_reschedule_handler:
pushaq
leaq 120(%rsp), %rdi # interrupt stack ptr
movq %rsp, %rsi # interrupt register ptr
call cpp_reschedule_handler
popaq
iretq
// arguments in RAX, RBX, RCX, RDX, RSI, RDI
// System V ABI: RDI, RSI, RDX, RCX, R8, R9

View File

@ -1,115 +1,41 @@
#include <BAN/Atomic.h>
#include <kernel/Panic.h>
#define ATEXIT_MAX_FUNCS 128
#ifdef __cplusplus
extern "C" {
#endif
typedef unsigned uarch_t;
struct atexit_func_entry_t
{
/*
* Each member is at least 4 bytes large. Such that each entry is 12bytes.
* 128 * 12 = 1.5KB exact.
**/
void (*destructor_func)(void *);
void *obj_ptr;
void *dso_handle;
void(*func)(void*);
void* arg;
void* dso_handle;
};
atexit_func_entry_t __atexit_funcs[ATEXIT_MAX_FUNCS];
uarch_t __atexit_func_count = 0;
static atexit_func_entry_t __atexit_funcs[ATEXIT_MAX_FUNCS];
static size_t __atexit_func_count = 0;
int __cxa_atexit(void (*f)(void *), void *objptr, void *dso)
extern "C" int __cxa_atexit(void(*func)(void*), void* arg, void* dso_handle)
{
if (__atexit_func_count >= ATEXIT_MAX_FUNCS) {return -1;};
__atexit_funcs[__atexit_func_count].destructor_func = f;
__atexit_funcs[__atexit_func_count].obj_ptr = objptr;
__atexit_funcs[__atexit_func_count].dso_handle = dso;
__atexit_func_count++;
return 0; /*I would prefer if functions returned 1 on success, but the ABI says...*/
if (__atexit_func_count >= ATEXIT_MAX_FUNCS)
return -1;
auto& atexit_func = __atexit_funcs[__atexit_func_count++];
atexit_func.func = func;
atexit_func.arg = arg;
atexit_func.dso_handle = dso_handle;
return 0;
};
void __cxa_finalize(void *f)
extern "C" void __cxa_finalize(void* f)
{
uarch_t i = __atexit_func_count;
if (!f)
for (size_t i = __atexit_func_count; i > 0; i--)
{
/*
* According to the Itanium C++ ABI, if __cxa_finalize is called without a
* function ptr, then it means that we should destroy EVERYTHING MUAHAHAHA!!
*
* TODO:
* Note well, however, that deleting a function from here that contains a __dso_handle
* means that one link to a shared object file has been terminated. In other words,
* We should monitor this list (optional, of course), since it tells us how many links to
* an object file exist at runtime in a particular application. This can be used to tell
* when a shared object is no longer in use. It is one of many methods, however.
**/
//You may insert a prinf() here to tell you whether or not the function gets called. Testing
//is CRITICAL!
while (i--)
auto& atexit_func = __atexit_funcs[i - 1];
if (atexit_func.func == nullptr)
continue;
if (f == nullptr || f == atexit_func.func)
{
if (__atexit_funcs[i].destructor_func)
{
/* ^^^ That if statement is a safeguard...
* To make sure we don't call any entries that have already been called and unset at runtime.
* Those will contain a value of 0, and calling a function with value 0
* will cause undefined behaviour. Remember that linear address 0,
* in a non-virtual address space (physical) contains the IVT and BDA.
*
* In a virtual environment, the kernel will receive a page fault, and then probably
* map in some trash, or a blank page, or something stupid like that.
* This will result in the processor executing trash, and...we don't want that.
**/
(*__atexit_funcs[i].destructor_func)(__atexit_funcs[i].obj_ptr);
};
};
return;
};
while (i--)
{
/*
* The ABI states that multiple calls to the __cxa_finalize(destructor_func_ptr) function
* should not destroy objects multiple times. Only one call is needed to eliminate multiple
* entries with the same address.
*
* FIXME:
* This presents the obvious problem: all destructors must be stored in the order they
* were placed in the list. I.e: the last initialized object's destructor must be first
* in the list of destructors to be called. But removing a destructor from the list at runtime
* creates holes in the table with unfilled entries.
* Remember that the insertion algorithm in __cxa_atexit simply inserts the next destructor
* at the end of the table. So, we have holes with our current algorithm
* This function should be modified to move all the destructors above the one currently
* being called and removed one place down in the list, so as to cover up the hole.
* Otherwise, whenever a destructor is called and removed, an entire space in the table is wasted.
**/
if (__atexit_funcs[i].destructor_func == f)
{
/*
* Note that in the next line, not every destructor function is a class destructor.
* It is perfectly legal to register a non class destructor function as a simple cleanup
* function to be called on program termination, in which case, it would not NEED an
* object This pointer. A smart programmer may even take advantage of this and register
* a C function in the table with the address of some structure containing data about
* what to clean up on exit.
* In the case of a function that takes no arguments, it will simply be ignore within the
* function itself. No worries.
**/
(*__atexit_funcs[i].destructor_func)(__atexit_funcs[i].obj_ptr);
__atexit_funcs[i].destructor_func = 0;
/*
* Notice that we didn't decrement __atexit_func_count: this is because this algorithm
* requires patching to deal with the FIXME outlined above.
**/
};
};
atexit_func.func(atexit_func.arg);
atexit_func.func = nullptr;
}
}
};
namespace __cxxabiv1
@ -118,23 +44,19 @@ namespace __cxxabiv1
int __cxa_guard_acquire (__guard* g)
{
auto& atomic = *reinterpret_cast<BAN::Atomic<__guard>*>(g);
return atomic == 0;
uint8_t* byte = reinterpret_cast<uint8_t*>(g);
uint8_t zero = 0;
return __atomic_compare_exchange_n(byte, &zero, 1, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
}
void __cxa_guard_release (__guard* g)
{
auto& atomic = *reinterpret_cast<BAN::Atomic<__guard>*>(g);
atomic = 1;
uint8_t* byte = reinterpret_cast<uint8_t*>(g);
__atomic_store_n(byte, 0, __ATOMIC_RELEASE);
}
void __cxa_guard_abort (__guard*)
{
Kernel::panic("__cxa_guard_abort");
__builtin_unreachable();
}
}
#ifdef __cplusplus
};
#endif

View File

@ -1,11 +1,11 @@
#pragma once
#define x86_64 1
#define i386 2
#define i686 2
#define ARCH(arch) (__arch == arch)
#if !defined(__arch) || (__arch != x86_64 && __arch != i386)
#if !defined(__arch) || (__arch != x86_64 && __arch != i686)
#error "Unsupported architecture"
#endif
@ -13,16 +13,14 @@
#define read_rsp(rsp) asm volatile("movq %%rsp, %0" : "=r"(rsp))
#define push_callee_saved() asm volatile("pushq %rbx; pushq %rbp; pushq %r12; pushq %r13; pushq %r14; pushq %r15")
#define pop_callee_saved() asm volatile("popq %r15; popq %r14; popq %r13; popq %r12; popq %rbp; popq %rbx")
#else
#elif ARCH(i686)
#define read_rsp(rsp) asm volatile("movl %%esp, %0" : "=r"(rsp))
#define push_callee_saved() asm volatile("pushal")
#define pop_callee_saved() asm volatile("popal")
#else
#error
#endif
#include <stdint.h>
#ifdef __cplusplus
extern "C" uintptr_t read_rip();
#else
extern uintptr_t read_rip();
#endif
extern "C" uintptr_t read_ip();

View File

@ -21,12 +21,24 @@ namespace Kernel
size_t size { 0 };
blkcnt_t blocks { 0 };
#if ARCH(x86_64)
// 2x direct blocks
// 1x singly indirect
// 1x doubly indirect
// 1x triply indirect
BAN::Array<paddr_t, 5> block;
static constexpr size_t direct_block_count = 2;
#elif ARCH(i686)
uint32_t __padding;
// 5x direct blocks
// 1x singly indirect
// 1x doubly indirect
// 1x triply indirect
BAN::Array<paddr_t, 8> block;
static constexpr size_t direct_block_count = 5;
#else
#error
#endif
static constexpr size_t max_size =
direct_block_count * PAGE_SIZE +
(PAGE_SIZE / sizeof(paddr_t)) * PAGE_SIZE +

View File

@ -2,12 +2,14 @@
#include <BAN/Array.h>
#include <BAN/NoCopyMove.h>
#include <kernel/Arch.h>
#include <stdint.h>
namespace Kernel
{
#if ARCH(x86_64)
struct TaskStateSegment
{
uint32_t reserved1;
@ -26,6 +28,54 @@ namespace Kernel
uint16_t reserved4;
uint16_t iopb;
} __attribute__((packed));
static_assert(sizeof(TaskStateSegment) == 104);
#elif ARCH(i686)
struct TaskStateSegment
{
uint16_t link;
uint16_t __reserved0;
uint32_t esp0;
uint16_t ss0;
uint16_t __reserved1;
uint32_t esp1;
uint16_t ss1;
uint16_t __reserved2;
uint32_t esp2;
uint16_t ss2;
uint16_t __reserved3;
uint32_t cr3;
uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ecx;
uint32_t edx;
uint32_t ebx;
uint32_t esp;
uint32_t ebp;
uint32_t esi;
uint32_t edi;
uint16_t es;
uint16_t __reserved4;
uint16_t cs;
uint16_t __reserved5;
uint16_t ss;
uint16_t __reserved6;
uint16_t ds;
uint16_t __reserved7;
uint16_t fs;
uint16_t __reserved8;
uint16_t gs;
uint16_t __reserved9;
uint16_t ldtr;
uint16_t __reserved10;
uint16_t __reserved11;
uint16_t iopb;
uint32_t ssp;
};
static_assert(sizeof(TaskStateSegment) == 108);
#else
#error
#endif
union SegmentDescriptor
{
@ -38,20 +88,20 @@ namespace Kernel
uint8_t limit2 : 4;
uint8_t flags : 4;
uint8_t base3;
} __attribute__((packed));
};
struct
{
uint32_t low;
uint32_t high;
} __attribute__((packed));
} __attribute__((packed));
};
};
static_assert(sizeof(SegmentDescriptor) == 8);
struct GDTR
{
uint16_t size;
uint64_t address;
uintptr_t address;
} __attribute__((packed));
class GDT
@ -60,7 +110,7 @@ namespace Kernel
BAN_NON_MOVABLE(GDT);
public:
static GDT* create();
static GDT* create(void* processor);
void load() { flush_gdt(); flush_tss(); }
static constexpr inline bool is_user_segment(uint8_t segment)
@ -68,9 +118,14 @@ namespace Kernel
return (segment & 3) == 3;
}
void set_tss_stack(uintptr_t rsp)
void set_tss_stack(uintptr_t sp)
{
m_tss.rsp0 = rsp;
#if ARCH(x86_64)
m_tss.rsp0 = sp;
#elif ARCH(i686)
m_tss.esp0 = sp;
m_tss.ss0 = 0x10;
#endif
}
private:
@ -86,15 +141,21 @@ namespace Kernel
void flush_tss()
{
asm volatile("ltr %0" :: "rm"((uint16_t)0x28) : "memory");
asm volatile("ltr %0" :: "rm"(m_tss_offset) : "memory");
}
private:
#if ARCH(x86_64)
BAN::Array<SegmentDescriptor, 7> m_gdt; // null, kernel code, kernel data, user code, user data, tss low, tss high
static constexpr uint16_t m_tss_offset = 0x28;
#elif ARCH(i686)
BAN::Array<SegmentDescriptor, 7> m_gdt; // null, kernel code, kernel data, user code, user data, processor data, tss
static constexpr uint16_t m_tss_offset = 0x30;
#endif
TaskStateSegment m_tss;
const GDTR m_gdtr {
.size = m_gdt.size() * sizeof(SegmentDescriptor) - 1,
.address = reinterpret_cast<uint64_t>(m_gdt.data())
.address = reinterpret_cast<uintptr_t>(m_gdt.data())
};
};

View File

@ -2,6 +2,7 @@
#include <BAN/Array.h>
#include <BAN/NoCopyMove.h>
#include <kernel/Arch.h>
#include <kernel/Interruptable.h>
#include <stdint.h>
@ -12,21 +13,36 @@ constexpr uint8_t IRQ_IPI = 32;
namespace Kernel
{
#if ARCH(x86_64)
struct GateDescriptor
{
uint16_t offset1;
uint16_t offset0;
uint16_t selector;
uint8_t IST;
uint8_t flags;
uint16_t offset2;
uint32_t offset3;
uint16_t offset1;
uint32_t offset2;
uint32_t reserved;
} __attribute__((packed));
};
static_assert(sizeof(GateDescriptor) == 16);
#elif ARCH(i686)
struct GateDescriptor
{
uint16_t offset0;
uint16_t selector;
uint8_t reserved;
uint8_t flags;
uint16_t offset1;
};
static_assert(sizeof(GateDescriptor) == 8);
#else
#error
#endif
struct IDTR
{
uint16_t size;
uint64_t offset;
uintptr_t offset;
} __attribute__((packed));
class IDT

View File

@ -18,6 +18,7 @@ namespace Kernel
virtual bool is_in_service(uint8_t) = 0;
static void initialize(bool force_pic);
static bool is_initialized();
static InterruptController& get();
virtual void initialize_multiprocessor() = 0;

View File

@ -7,11 +7,45 @@ namespace Kernel
struct InterruptStack
{
uint64_t rip;
uint64_t cs;
uint64_t flags;
uint64_t rsp;
uint64_t ss;
uintptr_t ip;
uintptr_t cs;
uintptr_t flags;
uintptr_t sp;
uintptr_t ss;
};
#if ARCH(x86_64)
struct InterruptRegisters
{
uintptr_t r15;
uintptr_t r14;
uintptr_t r13;
uintptr_t r12;
uintptr_t r11;
uintptr_t r10;
uintptr_t r9;
uintptr_t r8;
uintptr_t rdi;
uintptr_t rsi;
uintptr_t rbp;
uintptr_t rbx;
uintptr_t rdx;
uintptr_t rcx;
uintptr_t rax;
};
#elif ARCH(i686)
struct InterruptRegisters
{
uintptr_t edi;
uintptr_t esi;
uintptr_t ebp;
uintptr_t unused;
uintptr_t ebx;
uintptr_t edx;
uintptr_t ecx;
uintptr_t eax;
};
#endif
}

View File

@ -25,7 +25,7 @@ namespace Kernel
else
{
while (!m_locker.compare_exchange(-1, tid))
Scheduler::get().reschedule();
Scheduler::get().yield();
ASSERT(m_lock_depth == 0);
}
m_lock_depth++;
@ -81,7 +81,7 @@ namespace Kernel
if (has_priority)
m_queue_length++;
while (!(has_priority || m_queue_length == 0) || !m_locker.compare_exchange(-1, tid))
Scheduler::get().reschedule();
Scheduler::get().yield();
ASSERT(m_lock_depth == 0);
}
m_lock_depth++;

View File

@ -4,12 +4,15 @@
#if ARCH(x86_64)
#define KERNEL_OFFSET 0xFFFFFFFF80000000
#define V2P(vaddr) (((vaddr_t)(vaddr)) - KERNEL_OFFSET)
#define P2V(paddr) (((paddr_t)(paddr)) + KERNEL_OFFSET)
#elif ARCH(i686)
#define KERNEL_OFFSET 0xC0000000
#else
#error
#endif
#define V2P(vaddr) (((vaddr_t)(vaddr)) - KERNEL_OFFSET)
#define P2V(paddr) (((paddr_t)(paddr)) + KERNEL_OFFSET)
#define PAGE_SIZE ((uintptr_t)4096)
#define PAGE_SIZE_SHIFT 12
#define PAGE_ADDR_MASK (~(uintptr_t)0xFFF)
@ -18,6 +21,6 @@ namespace Kernel
{
using vaddr_t = uintptr_t;
using paddr_t = uintptr_t;
using paddr_t = uint64_t;
}

View File

@ -199,6 +199,33 @@ namespace Kernel
BAN::ErrorOr<void> validate_string_access(const char*);
BAN::ErrorOr<void> validate_pointer_access(const void*, size_t);
uint64_t signal_pending_mask() const
{
return ((uint64_t)m_signal_pending_mask[1].load() << 32) | m_signal_pending_mask[0].load();
}
void add_pending_signal(uint8_t signal)
{
ASSERT(signal >= _SIGMIN);
ASSERT(signal <= _SIGMAX);
ASSERT(signal < 64);
if (signal < 32)
m_signal_pending_mask[0] |= (uint32_t)1 << signal;
else
m_signal_pending_mask[1] |= (uint32_t)1 << (signal - 32);
}
void remove_pending_signal(uint8_t signal)
{
ASSERT(signal >= _SIGMIN);
ASSERT(signal <= _SIGMAX);
ASSERT(signal < 64);
if (signal < 32)
m_signal_pending_mask[0] &= ~((uint32_t)1 << signal);
else
m_signal_pending_mask[1] &= ~((uint32_t)1 << (signal - 32));
}
private:
struct ExitStatus
{
@ -226,7 +253,8 @@ namespace Kernel
BAN::Vector<Thread*> m_threads;
BAN::Atomic<vaddr_t> m_signal_handlers[_SIGMAX + 1] { };
BAN::Atomic<uint64_t> m_signal_pending_mask { 0 };
// This is 2 32 bit values to allow atomicity on 32 targets
BAN::Atomic<uint32_t> m_signal_pending_mask[2] { 0, 0 };
BAN::Vector<BAN::String> m_cmdline;
BAN::Vector<BAN::String> m_environ;

View File

@ -5,6 +5,7 @@
#include <kernel/Arch.h>
#include <kernel/GDT.h>
#include <kernel/IDT.h>
#include <kernel/InterruptStack.h>
#include <kernel/SchedulerQueue.h>
namespace Kernel
@ -16,10 +17,10 @@ namespace Kernel
Enabled,
};
using ProcessorID = uint8_t;
constexpr ProcessorID PROCESSOR_NONE = 0xFF;
using ProcessorID = uint32_t;
constexpr ProcessorID PROCESSOR_NONE = 0xFFFFFFFF;
#if ARCH(x86_64)
#if ARCH(x86_64) || ARCH(i686)
class Processor
{
BAN_NON_COPYABLE(Processor);
@ -68,6 +69,11 @@ namespace Kernel
static SchedulerQueue::Node* get_current_thread() { return reinterpret_cast<SchedulerQueue::Node*>(read_gs_ptr(offsetof(Processor, m_current_thread))); }
static void set_current_thread(SchedulerQueue::Node* thread) { write_gs_ptr(offsetof(Processor, m_current_thread), thread); }
static void enter_interrupt(InterruptStack*, InterruptRegisters*);
static void leave_interrupt();
static InterruptStack& get_interrupt_stack();
static InterruptRegisters& get_interrupt_registers();
private:
Processor() = default;
~Processor() { ASSERT_NOT_REACHED(); }
@ -75,16 +81,16 @@ namespace Kernel
template<typename T>
static T read_gs_sized(uintptr_t offset) requires(sizeof(T) <= 8)
{
#define __ASM_INPUT(operation) operation " %%gs:%a[offset], %[result]" : [result]"=r"(result) : [offset]"ir"(offset)
#define __ASM_INPUT(operation) asm volatile(operation " %%gs:%a[offset], %[result]" : [result]"=r"(result) : [offset]"ir"(offset))
T result;
if constexpr(sizeof(T) == 8)
asm volatile(__ASM_INPUT("movq"));
__ASM_INPUT("movq");
if constexpr(sizeof(T) == 4)
asm volatile(__ASM_INPUT("movl"));
__ASM_INPUT("movl");
if constexpr(sizeof(T) == 2)
asm volatile(__ASM_INPUT("movw"));
__ASM_INPUT("movw");
if constexpr(sizeof(T) == 1)
asm volatile(__ASM_INPUT("movb"));
__ASM_INPUT("movb");
return result;
#undef __ASM_INPUT
}
@ -92,15 +98,15 @@ namespace Kernel
template<typename T>
static void write_gs_sized(uintptr_t offset, T value) requires(sizeof(T) <= 8)
{
#define __ASM_INPUT(operation) operation " %[value], %%gs:%a[offset]" :: [value]"r"(value), [offset]"ir"(offset) : "memory"
#define __ASM_INPUT(operation) asm volatile(operation " %[value], %%gs:%a[offset]" :: [value]"r"(value), [offset]"ir"(offset) : "memory")
if constexpr(sizeof(T) == 8)
asm volatile(__ASM_INPUT("movq"));
__ASM_INPUT("movq");
if constexpr(sizeof(T) == 4)
asm volatile(__ASM_INPUT("movl"));
__ASM_INPUT("movl");
if constexpr(sizeof(T) == 2)
asm volatile(__ASM_INPUT("movw"));
__ASM_INPUT("movw");
if constexpr(sizeof(T) == 1)
asm volatile(__ASM_INPUT("movb"));
__ASM_INPUT("movb");
#undef __ASM_INPUT
}
@ -121,6 +127,9 @@ namespace Kernel
Thread* m_idle_thread { nullptr };
SchedulerQueue::Node* m_current_thread { nullptr };
InterruptStack* m_interrupt_stack { nullptr };
InterruptRegisters* m_interrupt_registers { nullptr };
void* m_current_page_table { nullptr };
friend class BAN::Array<Processor, 0xFF>;

View File

@ -16,8 +16,10 @@ namespace Kernel
[[noreturn]] void start();
void yield();
void timer_reschedule();
void reschedule();
void irq_reschedule();
void reschedule_if_idling();
void set_current_thread_sleeping(uint64_t wake_time);
@ -30,9 +32,6 @@ namespace Kernel
Thread& current_thread();
static pid_t current_tid();
[[noreturn]] void execute_current_thread();
[[noreturn]] void delete_current_process_and_thread();
// This is no return if called on current thread
void terminate_thread(Thread*);
@ -41,11 +40,7 @@ namespace Kernel
void set_current_thread_sleeping_impl(Semaphore* semaphore, uint64_t wake_time);
[[nodiscard]] bool save_current_thread();
void advance_current_thread();
[[noreturn]] void execute_current_thread_locked();
[[noreturn]] void execute_current_thread_stack_loaded();
void setup_next_thread();
BAN::ErrorOr<void> add_thread(Thread*);

View File

@ -26,6 +26,7 @@ namespace Kernel
Thread* thread;
uint64_t wake_time { 0 };
Semaphore* semaphore { nullptr };
bool should_block { false };
private:
Node* next { nullptr };

View File

@ -31,11 +31,13 @@ namespace Kernel
uint32_t m_cq_head { 0 };
uint16_t m_cq_valid_phase { 1 };
Semaphore m_semaphore;
SpinLock m_lock;
BAN::Atomic<uint64_t> m_used_mask { 0 };
BAN::Atomic<uint64_t> m_done_mask { 0 };
volatile uint16_t m_status_codes[64] { };
Semaphore m_semaphore;
SpinLock m_lock;
BAN::Atomic<size_t> m_used_mask { 0 };
BAN::Atomic<size_t> m_done_mask { 0 };
volatile uint16_t m_status_codes[64] { };
static constexpr size_t m_mask_bits = sizeof(size_t) * 8;
};
}

View File

@ -4,6 +4,7 @@
#include <BAN/RefPtr.h>
#include <BAN/UniqPtr.h>
#include <kernel/Memory/VirtualRange.h>
#include <kernel/InterruptStack.h>
#include <signal.h>
#include <sys/types.h>
@ -25,7 +26,7 @@ namespace Kernel
{
NotStarted,
Executing,
Terminated
Terminated,
};
public:
@ -33,7 +34,7 @@ namespace Kernel
static BAN::ErrorOr<Thread*> create_userspace(Process*);
~Thread();
BAN::ErrorOr<Thread*> clone(Process*, uintptr_t rsp, uintptr_t rip);
BAN::ErrorOr<Thread*> clone(Process*, uintptr_t sp, uintptr_t ip);
void setup_exec();
void setup_process_cleanup();
@ -52,40 +53,33 @@ namespace Kernel
BAN::ErrorOr<void> block_or_eintr_or_timeout(Semaphore& semaphore, uint64_t timeout_ms, bool etimedout);
BAN::ErrorOr<void> block_or_eintr_or_waketime(Semaphore& semaphore, uint64_t wake_time_ms, bool etimedout);
void set_return_rsp(uintptr_t& rsp) { m_return_rsp = &rsp; }
void set_return_rip(uintptr_t& rip) { m_return_rip = &rip; }
uintptr_t return_rsp() { ASSERT(m_return_rsp); return *m_return_rsp; }
uintptr_t return_rip() { ASSERT(m_return_rip); return *m_return_rip; }
pid_t tid() const { return m_tid; }
void set_rsp(uintptr_t rsp) { m_rsp = rsp; validate_stack(); }
void set_rip(uintptr_t rip) { m_rip = rip; }
uintptr_t rsp() const { return m_rsp; }
uintptr_t rip() const { return m_rip; }
void set_started() { ASSERT(m_state == State::NotStarted); m_state = State::Executing; }
State state() const { return m_state; }
vaddr_t stack_base() const { return m_stack->vaddr(); }
size_t stack_size() const { return m_stack->size(); }
VirtualRange& stack() { return *m_stack; }
VirtualRange& interrupt_stack() { return *m_interrupt_stack; }
vaddr_t kernel_stack_bottom() const { return m_kernel_stack->vaddr(); }
vaddr_t kernel_stack_top() const { return m_kernel_stack->vaddr() + m_kernel_stack->size(); }
VirtualRange& kernel_stack() { return *m_kernel_stack; }
vaddr_t interrupt_stack_base() const { return m_interrupt_stack ? m_interrupt_stack->vaddr() : 0; }
size_t interrupt_stack_size() const { return m_interrupt_stack ? m_interrupt_stack->size() : 0; }
vaddr_t userspace_stack_bottom() const { return is_userspace() ? m_userspace_stack->vaddr() : 0; }
vaddr_t userspace_stack_top() const { return is_userspace() ? m_userspace_stack->vaddr() + m_userspace_stack->size() : 0; }
VirtualRange& userspace_stack() { ASSERT(is_userspace()); return *m_userspace_stack; }
static Thread& current();
static pid_t current_tid();
Process& process();
const Process& process() const;
bool has_process() const { return m_process; }
bool is_userspace() const { return m_is_userspace; }
size_t virtual_page_count() const { return m_stack->size() / PAGE_SIZE; }
size_t virtual_page_count() const { return (m_kernel_stack->size() / PAGE_SIZE) + (m_userspace_stack->size() / PAGE_SIZE); }
size_t physical_page_count() const { return virtual_page_count(); }
InterruptStack& interrupt_stack() { return m_interrupt_stack; }
InterruptRegisters& interrupt_registers() { return m_interrupt_registers; }
#if __enable_sse
void save_sse();
void load_sse();
@ -94,25 +88,23 @@ namespace Kernel
private:
Thread(pid_t tid, Process*);
void on_exit();
void validate_stack() const;
static void on_exit_trampoline(Thread*);
void on_exit();
private:
static constexpr size_t m_kernel_stack_size = PAGE_SIZE * 4;
static constexpr size_t m_userspace_stack_size = PAGE_SIZE * 2;
static constexpr size_t m_interrupt_stack_size = PAGE_SIZE * 2;
BAN::UniqPtr<VirtualRange> m_interrupt_stack;
BAN::UniqPtr<VirtualRange> m_stack;
uintptr_t m_rip { 0 };
uintptr_t m_rsp { 0 };
static constexpr size_t m_userspace_stack_size = PAGE_SIZE * 4;
BAN::UniqPtr<VirtualRange> m_kernel_stack;
BAN::UniqPtr<VirtualRange> m_userspace_stack;
const pid_t m_tid { 0 };
State m_state { State::NotStarted };
Process* m_process { nullptr };
bool m_is_userspace { false };
bool m_delete_process { false };
uintptr_t* m_return_rsp { nullptr };
uintptr_t* m_return_rip { nullptr };
InterruptStack m_interrupt_stack { };
InterruptRegisters m_interrupt_registers { };
uint64_t m_signal_pending_mask { 0 };
uint64_t m_signal_block_mask { 0 };
@ -123,6 +115,7 @@ namespace Kernel
alignas(16) uint8_t m_sse_storage[512] {};
#endif
friend class Process;
friend class Scheduler;
};

View File

@ -31,7 +31,9 @@ namespace Kernel
if (s_instance == nullptr)
return BAN::Error::from_errno(ENOMEM);
TRY(s_instance->initialize_impl());
#if ARCH(x86_64)
lai_create_namespace();
#endif
return {};
}
@ -93,7 +95,9 @@ namespace Kernel
const RSDP* rsdp = locate_rsdp();
if (rsdp == nullptr)
return BAN::Error::from_error_code(ErrorCode::ACPI_NoRootSDT);
#if ARCH(x86_64)
lai_set_acpi_revision(rsdp->revision);
#endif
uint32_t root_entry_count = 0;

View File

@ -21,8 +21,8 @@ namespace Debug
struct stackframe
{
stackframe* rbp;
uintptr_t rip;
stackframe* bp;
uintptr_t ip;
};
SpinLockGuard _(s_debug_lock);
@ -33,8 +33,8 @@ namespace Debug
dprintln("Could not get frame address");
return;
}
uintptr_t first_rip = frame->rip;
uintptr_t last_rip = 0;
uintptr_t first_ip = frame->ip;
uintptr_t last_ip = 0;
bool first = true;
BAN::Formatter::print(Debug::putchar, "\e[36mStack trace:\r\n");
@ -46,21 +46,21 @@ namespace Debug
break;
}
BAN::Formatter::print(Debug::putchar, " {}\r\n", (void*)frame->rip);
BAN::Formatter::print(Debug::putchar, " {}\r\n", (void*)frame->ip);
if (!first && frame->rip == first_rip)
if (!first && frame->ip == first_ip)
{
derrorln("looping kernel panic :(");
break;
}
else if (!first && frame->rip == last_rip)
else if (!first && frame->ip == last_ip)
{
derrorln("repeating stack trace");
break;
}
last_rip = frame->rip;
frame = frame->rbp;
last_ip = frame->ip;
frame = frame->bp;
first = false;
}
BAN::Formatter::print(Debug::putchar, "\e[m");

View File

@ -240,7 +240,7 @@ namespace Kernel
return BAN::Error::from_errno(ENOMEM);
auto region = BAN::UniqPtr<FramebufferMemoryRegion>::adopt(region_ptr);
TRY(region->initialize({ m_vaddr, m_vaddr + BAN::Math::div_round_up(m_size, PAGE_SIZE) * PAGE_SIZE }));
TRY(region->initialize({ m_vaddr, m_vaddr + BAN::Math::div_round_up<uintptr_t>(m_size, PAGE_SIZE) * PAGE_SIZE }));
return BAN::UniqPtr<MemoryRegion>(BAN::move(region));
}

View File

@ -108,10 +108,10 @@ namespace Kernel
ASSERT(!mode().ifdir());
ASSERT(offset >= 0);
if (offset >= UINT32_MAX || buffer.size() >= UINT32_MAX || buffer.size() >= (size_t)(UINT32_MAX - offset))
if (static_cast<BAN::make_unsigned_t<decltype(offset)>>(offset) >= UINT32_MAX || buffer.size() >= UINT32_MAX || buffer.size() >= (size_t)(UINT32_MAX - offset))
return BAN::Error::from_errno(EOVERFLOW);
if (offset >= m_inode.size)
if (static_cast<BAN::make_unsigned_t<decltype(offset)>>(offset) >= m_inode.size)
return 0;
uint32_t count = buffer.size();
@ -152,7 +152,7 @@ namespace Kernel
ASSERT(!mode().ifdir());
ASSERT(offset >= 0);
if (offset >= UINT32_MAX || buffer.size() >= UINT32_MAX || buffer.size() >= (size_t)(UINT32_MAX - offset))
if (static_cast<BAN::make_unsigned_t<decltype(offset)>>(offset) >= UINT32_MAX || buffer.size() >= UINT32_MAX || buffer.size() >= (size_t)(UINT32_MAX - offset))
return BAN::Error::from_errno(EOVERFLOW);
if (m_inode.size < offset + buffer.size())
@ -304,7 +304,7 @@ done:
ASSERT(mode().ifdir());
ASSERT(offset >= 0);
if (offset >= max_used_data_block_count())
if (static_cast<BAN::make_unsigned_t<decltype(offset)>>(offset) >= max_used_data_block_count())
{
list->entry_count = 0;
return {};

69
kernel/kernel/GDT.cpp Normal file
View File

@ -0,0 +1,69 @@
#include <kernel/GDT.h>
#include <kernel/Processor.h>
#include <string.h>
namespace Kernel
{
GDT* GDT::create([[maybe_unused]] void* processor)
{
auto* gdt = new GDT();
ASSERT(gdt);
#if ARCH(x86_64)
constexpr uint8_t code_flags = 0xA;
constexpr uint8_t data_flags = 0xC;
#elif ARCH(i686)
constexpr uint8_t code_flags = 0xC;
constexpr uint8_t data_flags = 0xC;
#endif
gdt->write_entry(0x00, 0x00000000, 0x00000, 0x00, 0x0); // null
gdt->write_entry(0x08, 0x00000000, 0xFFFFF, 0x9A, code_flags); // kernel code
gdt->write_entry(0x10, 0x00000000, 0xFFFFF, 0x92, data_flags); // kernel data
gdt->write_entry(0x18, 0x00000000, 0xFFFFF, 0xFA, code_flags); // user code
gdt->write_entry(0x20, 0x00000000, 0xFFFFF, 0xF2, data_flags); // user data
#if ARCH(i686)
gdt->write_entry(0x28, reinterpret_cast<uint32_t>(processor), sizeof(Processor), 0x92, 0x4); // processor data
#endif
gdt->write_tss();
return gdt;
}
void GDT::write_entry(uint8_t offset, uint32_t base, uint32_t limit, uint8_t access, uint8_t flags)
{
ASSERT(offset % sizeof(SegmentDescriptor) == 0);
uint8_t idx = offset / sizeof(SegmentDescriptor);
auto& desc = m_gdt[idx];
desc.base1 = (base >> 0) & 0xFFFF;
desc.base2 = (base >> 16) & 0xFF;
desc.base3 = (base >> 24) & 0xFF;
desc.limit1 = (limit >> 0) & 0xFFFF;
desc.limit2 = (limit >> 16) & 0x0F;
desc.access = access & 0xFF;
desc.flags = flags & 0x0F;
}
void GDT::write_tss()
{
memset(&m_tss, 0x00, sizeof(TaskStateSegment));
m_tss.iopb = sizeof(TaskStateSegment);
uintptr_t base = reinterpret_cast<uintptr_t>(&m_tss);
write_entry(m_tss_offset, (uint32_t)base, sizeof(TaskStateSegment), 0x89, 0x0);
#if ARCH(x86_64)
auto& desc = m_gdt[(m_tss_offset + 8) / sizeof(SegmentDescriptor)];
desc.low = base >> 32;
desc.high = 0;
#endif
}
}

View File

@ -10,16 +10,14 @@
#include <kernel/Timer/PIT.h>
#define ISR_LIST_X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(18) X(19) X(20) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(28) X(29) X(30) X(31)
#define IRQ_LIST_X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(18) X(19) X(20) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(28) X(29) X(30) X(31) X(32)
#define IRQ_LIST_X X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(18) X(19) X(20) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(28) X(29) X(30) X(31)
namespace Kernel
{
#if ARCH(x86_64)
struct Registers
{
uint64_t rsp;
uint64_t rip;
uint64_t rflags;
uint64_t cr4;
uint64_t cr3;
uint64_t cr2;
@ -33,14 +31,33 @@ namespace Kernel
uint64_t r10;
uint64_t r9;
uint64_t r8;
uint64_t rsi;
uint64_t rdi;
uint64_t rsi;
uint64_t rbp;
uint64_t rbx;
uint64_t rdx;
uint64_t rcx;
uint64_t rbx;
uint64_t rax;
};
#elif ARCH(i686)
struct Registers
{
uint32_t cr4;
uint32_t cr3;
uint32_t cr2;
uint32_t cr0;
uint32_t edi;
uint32_t esi;
uint32_t ebp;
uint32_t unused;
uint32_t ebx;
uint32_t edx;
uint32_t ecx;
uint32_t eax;
};
#endif
#define X(num) 1 +
static BAN::Array<Interruptable*, IRQ_LIST_X 0> s_interruptables;
@ -141,46 +158,37 @@ namespace Kernel
"Unkown Exception 0x1F",
};
extern "C" void cpp_isr_handler(uint64_t isr, uint64_t error, InterruptStack& interrupt_stack, const Registers* regs)
extern "C" void cpp_isr_handler(uint32_t isr, uint32_t error, InterruptStack* interrupt_stack, const Registers* regs)
{
if (g_paniced)
{
dprintln("Processor {} halted", Processor::current_id());
InterruptController::get().broadcast_ipi();
if (InterruptController::is_initialized())
InterruptController::get().broadcast_ipi();
asm volatile("cli; 1: hlt; jmp 1b");
}
#if __enable_sse
bool from_userspace = (interrupt_stack.cs & 0b11) == 0b11;
if (from_userspace)
Thread::current().save_sse();
#endif
pid_t tid = Scheduler::current_tid();
pid_t pid = tid ? Process::current().pid() : 0;
if (tid)
{
Thread::current().set_return_rsp(interrupt_stack.rsp);
Thread::current().set_return_rip(interrupt_stack.rip);
if (isr == ISR::PageFault)
{
// Check if stack is OOB
auto& stack = Thread::current().stack();
auto& istack = Thread::current().interrupt_stack();
if (stack.vaddr() < interrupt_stack.rsp && interrupt_stack.rsp <= stack.vaddr() + stack.size())
; // using normal stack
else if (istack.vaddr() < interrupt_stack.rsp && interrupt_stack.rsp <= istack.vaddr() + istack.size())
; // using interrupt stack
auto& thread = Thread::current();
if (thread.userspace_stack_bottom() < interrupt_stack->sp && interrupt_stack->sp <= thread.userspace_stack_top())
; // using userspace stack
else if (thread.kernel_stack_bottom() < interrupt_stack->sp && interrupt_stack->sp <= thread.kernel_stack_top())
; // using kernel stack
else
{
derrorln("Stack pointer out of bounds!");
derrorln("rip {H}", interrupt_stack.rip);
derrorln("rsp {H}, stack {H}->{H}, istack {H}->{H}",
interrupt_stack.rsp,
stack.vaddr(), stack.vaddr() + stack.size(),
istack.vaddr(), istack.vaddr() + istack.size()
derrorln("rip {H}", interrupt_stack->ip);
derrorln("rsp {H}, userspace stack {H}->{H}, kernel stack {H}->{H}",
interrupt_stack->sp,
thread.userspace_stack_bottom(), thread.userspace_stack_top(),
thread.kernel_stack_bottom(), thread.kernel_stack_top()
);
Thread::current().handle_signal(SIGKILL);
goto done;
@ -191,9 +199,9 @@ namespace Kernel
page_fault_error.raw = error;
if (!page_fault_error.present)
{
asm volatile("sti");
Processor::set_interrupt_state(InterruptState::Enabled);
auto result = Process::current().allocate_page_for_demand_paging(regs->cr2);
asm volatile("cli");
Processor::set_interrupt_state(InterruptState::Disabled);
if (!result.is_error() && result.value())
goto done;
@ -209,11 +217,19 @@ namespace Kernel
#if __enable_sse
else if (isr == ISR::DeviceNotAvailable)
{
#if ARCH(x86_64)
asm volatile(
"movq %cr0, %rax;"
"andq $~(1 << 3), %rax;"
"movq %rax, %cr0;"
);
#elif ARCH(i686)
asm volatile(
"movl %cr0, %eax;"
"andl $~(1 << 3), %eax;"
"movl %eax, %cr0;"
);
#endif
if (auto* current = &Thread::current(); current != Thread::sse_thread())
{
if (auto* sse = Thread::sse_thread())
@ -225,9 +241,9 @@ namespace Kernel
#endif
}
if (PageTable::current().get_page_flags(interrupt_stack.rip & PAGE_ADDR_MASK) & PageTable::Flags::Present)
if (PageTable::current().get_page_flags(interrupt_stack->ip & PAGE_ADDR_MASK) & PageTable::Flags::Present)
{
auto* machine_code = (const uint8_t*)interrupt_stack.rip;
auto* machine_code = (const uint8_t*)interrupt_stack->ip;
dwarnln("While executing: {2H}{2H}{2H}{2H}{2H}{2H}{2H}{2H}",
machine_code[0],
machine_code[1],
@ -240,8 +256,9 @@ namespace Kernel
);
}
#if ARCH(x86_64)
dwarnln(
"{} (error code: 0x{16H}), pid {}, tid {}\r\n"
"{} (error code: 0x{8H}), pid {}, tid {}\r\n"
"Register dump\r\n"
"rax=0x{16H}, rbx=0x{16H}, rcx=0x{16H}, rdx=0x{16H}\r\n"
"rsp=0x{16H}, rbp=0x{16H}, rdi=0x{16H}, rsi=0x{16H}\r\n"
@ -249,10 +266,25 @@ namespace Kernel
"cr0=0x{16H}, cr2=0x{16H}, cr3=0x{16H}, cr4=0x{16H}",
isr_exceptions[isr], error, pid, tid,
regs->rax, regs->rbx, regs->rcx, regs->rdx,
regs->rsp, regs->rbp, regs->rdi, regs->rsi,
regs->rip, regs->rflags,
interrupt_stack->sp, regs->rbp, regs->rdi, regs->rsi,
interrupt_stack->ip, interrupt_stack->flags,
regs->cr0, regs->cr2, regs->cr3, regs->cr4
);
#elif ARCH(i686)
dwarnln(
"{} (error code: 0x{8H}), pid {}, tid {}\r\n"
"Register dump\r\n"
"eax=0x{8H}, ebx=0x{8H}, ecx=0x{8H}, edx=0x{8H}\r\n"
"esp=0x{8H}, ebp=0x{8H}, edi=0x{8H}, esi=0x{8H}\r\n"
"eip=0x{8H}, eflags=0x{8H}\r\n"
"cr0=0x{8H}, cr2=0x{8H}, cr3=0x{8H}, cr4=0x{8H}",
isr_exceptions[isr], error, pid, tid,
regs->eax, regs->ebx, regs->ecx, regs->edx,
interrupt_stack->sp, regs->ebp, regs->edi, regs->esi,
interrupt_stack->ip, interrupt_stack->flags,
regs->cr0, regs->cr2, regs->cr3, regs->cr4
);
#endif
if (isr == ISR::PageFault)
PageTable::current().debug_dump();
Debug::dump_stack_trace();
@ -297,29 +329,31 @@ done:
return;
}
extern "C" void cpp_irq_handler(uint64_t irq, InterruptStack& interrupt_stack)
extern "C" void cpp_reschedule_handler(InterruptStack* interrupt_stack, InterruptRegisters* interrupt_registers)
{
Processor::enter_interrupt(interrupt_stack, interrupt_registers);
Scheduler::get().irq_reschedule();
Processor::leave_interrupt();
}
extern "C" void cpp_irq_handler(uint32_t irq)
{
if (g_paniced)
{
dprintln("Processor {} halted", Processor::current_id());
InterruptController::get().broadcast_ipi();
if (InterruptController::is_initialized())
InterruptController::get().broadcast_ipi();
asm volatile("cli; 1: hlt; jmp 1b");
}
if (Scheduler::current_tid())
{
Thread::current().set_return_rsp(interrupt_stack.rsp);
Thread::current().set_return_rip(interrupt_stack.rip);
}
ASSERT(irq != IRQ_IPI);
if (!InterruptController::get().is_in_service(irq))
dprintln("spurious irq 0x{2H}", irq);
else
{
InterruptController::get().eoi(irq);
if (irq == IRQ_IPI)
Scheduler::get().reschedule();
else if (auto* handler = s_interruptables[irq])
if (auto* handler = s_interruptables[irq])
handler->handle_irq();
else
dprintln("no handler for irq 0x{2H}", irq);
@ -332,14 +366,17 @@ done:
void IDT::register_interrupt_handler(uint8_t index, void (*handler)())
{
auto& descriptor = m_idt[index];
descriptor.offset1 = (uint16_t)((uint64_t)handler >> 0);
descriptor.offset2 = (uint16_t)((uint64_t)handler >> 16);
descriptor.offset3 = (uint32_t)((uint64_t)handler >> 32);
auto& desc = m_idt[index];
memset(&desc, 0, sizeof(GateDescriptor));
descriptor.selector = 0x08;
descriptor.IST = 0;
descriptor.flags = 0x8E;
desc.offset0 = (uint16_t)((uintptr_t)handler >> 0);
desc.offset1 = (uint16_t)((uintptr_t)handler >> 16);
#if ARCH(x86_64)
desc.offset2 = (uint32_t)((uintptr_t)handler >> 32);
#endif
desc.selector = 0x08;
desc.flags = 0x8E;
}
void IDT::register_syscall_handler(uint8_t index, void (*handler)())
@ -363,6 +400,7 @@ done:
IRQ_LIST_X
#undef X
extern "C" void asm_reschedule_handler();
extern "C" void syscall_asm();
IDT* IDT::create()
@ -380,6 +418,8 @@ done:
IRQ_LIST_X
#undef X
idt->register_interrupt_handler(IRQ_VECTOR_BASE + IRQ_IPI, asm_reschedule_handler);
idt->register_syscall_handler(0x80, syscall_asm);
return idt;

View File

@ -40,9 +40,16 @@ namespace Kernel
s_instance->m_using_apic = false;
}
bool InterruptController::is_initialized()
{
return s_instance;
}
void InterruptController::enter_acpi_mode()
{
#if ARCH(x86_64)
if (lai_enable_acpi(m_using_apic ? 1 : 0) != 0)
#endif
dwarnln("could not enter acpi mode");
}

View File

@ -79,7 +79,7 @@ namespace Kernel
if (it != m_arp_table.end())
return it->value;
}
Scheduler::get().reschedule();
Scheduler::get().yield();
}
return BAN::Error::from_errno(ETIMEDOUT);

View File

@ -173,8 +173,9 @@ namespace Kernel
rx_descriptors[i].status = 0;
}
write32(REG_RDBAL0, m_rx_descriptor_region->paddr() & 0xFFFFFFFF);
write32(REG_RDBAH0, m_rx_descriptor_region->paddr() >> 32);
uint64_t paddr64 = m_rx_descriptor_region->paddr();
write32(REG_RDBAL0, paddr64 & 0xFFFFFFFF);
write32(REG_RDBAH0, paddr64 >> 32);
write32(REG_RDLEN0, E1000_RX_DESCRIPTOR_COUNT * sizeof(e1000_rx_desc));
write32(REG_RDH0, 0);
write32(REG_RDT0, E1000_RX_DESCRIPTOR_COUNT - 1);
@ -206,8 +207,9 @@ namespace Kernel
tx_descriptors[i].cmd = 0;
}
write32(REG_TDBAL, m_tx_descriptor_region->paddr() & 0xFFFFFFFF);
write32(REG_TDBAH, m_tx_descriptor_region->paddr() >> 32);
uint64_t paddr64 = m_tx_descriptor_region->paddr();
write32(REG_TDBAL, paddr64 & 0xFFFFFFFF);
write32(REG_TDBAH, paddr64 >> 32);
write32(REG_TDLEN, E1000_TX_DESCRIPTOR_COUNT * sizeof(e1000_tx_desc));
write32(REG_TDH, 0);
write32(REG_TDT, 0);

View File

@ -164,7 +164,7 @@ namespace Kernel
}
while (!connection_info.connection_done)
Scheduler::get().reschedule();
Scheduler::get().yield();
return {};
}

View File

@ -127,9 +127,6 @@ namespace Kernel
}
process->m_loadable_elf->reserve_address_space();
process->m_is_userspace = true;
process->m_userspace_info.entry = process->m_loadable_elf->entry_point();
char** argv = nullptr;
{
size_t needed_bytes = sizeof(char*) * 2 + path.size() + 1;
@ -155,6 +152,8 @@ namespace Kernel
MUST(process->m_mapped_regions.push_back(BAN::move(argv_region)));
}
process->m_is_userspace = true;
process->m_userspace_info.entry = process->m_loadable_elf->entry_point();
process->m_userspace_info.argc = 1;
process->m_userspace_info.argv = argv;
process->m_userspace_info.envp = nullptr;
@ -207,7 +206,7 @@ namespace Kernel
m_exit_status.semaphore.unblock();
while (m_exit_status.waiting > 0)
Scheduler::get().reschedule();
Scheduler::get().yield();
m_process_lock.lock();
@ -220,7 +219,7 @@ namespace Kernel
bool Process::on_thread_exit(Thread& thread)
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
LockGuard _(m_process_lock);
ASSERT(m_threads.size() > 0);
@ -228,8 +227,6 @@ namespace Kernel
{
ASSERT(m_threads.front() == &thread);
m_threads.clear();
thread.setup_process_cleanup();
return true;
}
@ -248,11 +245,18 @@ namespace Kernel
void Process::exit(int status, int signal)
{
m_exit_status.exit_code = __WGENEXITCODE(status, signal);
for (auto* thread : m_threads)
if (thread != &Thread::current())
Scheduler::get().terminate_thread(thread);
if (this == &Process::current())
Scheduler::get().terminate_thread(&Thread::current());
while (!m_threads.empty())
m_threads.front()->on_exit();
//for (auto* thread : m_threads)
// if (thread != &Thread::current())
// Scheduler::get().terminate_thread(thread);
//if (this == &Process::current())
//{
// m_threads.clear();
// Processor::set_interrupt_state(InterruptState::Disabled);
// Thread::current().setup_process_cleanup();
// Scheduler::get().yield();
//}
}
size_t Process::proc_meminfo(off_t offset, BAN::ByteSpan buffer) const
@ -390,7 +394,7 @@ namespace Kernel
return TRY(LibELF::LoadableELF::load_from_inode(page_table, file.inode));
}
BAN::ErrorOr<long> Process::sys_fork(uintptr_t rsp, uintptr_t rip)
BAN::ErrorOr<long> Process::sys_fork(uintptr_t sp, uintptr_t ip)
{
auto page_table = BAN::UniqPtr<PageTable>::adopt(TRY(PageTable::create_userspace()));
@ -423,7 +427,7 @@ namespace Kernel
ASSERT(this == &Process::current());
// FIXME: this should be able to fail
Thread* thread = MUST(Thread::current().clone(forked, rsp, rip));
Thread* thread = MUST(Thread::current().clone(forked, sp, ip));
forked->add_thread(thread);
forked->register_to_scheduler();
@ -533,7 +537,7 @@ namespace Kernel
m_has_called_exec = true;
m_threads.front()->setup_exec();
Scheduler::get().execute_current_thread();
Scheduler::get().yield();
ASSERT_NOT_REACHED();
}
@ -676,9 +680,9 @@ namespace Kernel
LockGuard _(m_process_lock);
if (Thread::current().stack().contains(address))
if (Thread::current().userspace_stack().contains(address))
{
TRY(Thread::current().stack().allocate_page_for_demand_paging(address));
TRY(Thread::current().userspace_stack().allocate_page_for_demand_paging(address));
return true;
}
@ -1187,7 +1191,9 @@ namespace Kernel
[[noreturn]] static void reset_system()
{
#if ARCH(x86_64)
lai_acpi_reset();
#endif
// acpi reset did not work
@ -1206,21 +1212,17 @@ namespace Kernel
DevFileSystem::get().initiate_sync(true);
lai_api_error_t error;
switch (command)
{
case POWEROFF_REBOOT:
reset_system();
break;
case POWEROFF_SHUTDOWN:
error = lai_enter_sleep(5);
break;
default:
ASSERT_NOT_REACHED();
}
if (command == POWEROFF_REBOOT)
reset_system();
#if ARCH(x86_64)
auto error = lai_enter_sleep(5);
// If we reach here, there was an error
dprintln("{}", lai_api_error_to_string(error));
#else
dprintln("poweroff available only on x86_64");
#endif
return BAN::Error::from_errno(EUNKNOWN);
}
@ -1490,7 +1492,7 @@ namespace Kernel
if (pid == m_pid)
{
m_signal_pending_mask |= 1 << signal;
add_pending_signal(signal);
return 0;
}
@ -1503,7 +1505,7 @@ namespace Kernel
found = true;
if (signal)
{
process.m_signal_pending_mask |= 1 << signal;
process.add_pending_signal(signal);
// FIXME: This feels hacky
Scheduler::get().unblock_thread(process.m_threads.front()->tid());
}
@ -1881,7 +1883,7 @@ namespace Kernel
if (vaddr == 0)
return {};
if (vaddr >= thread.stack_base() && vaddr + size <= thread.stack_base() + thread.stack_size())
if (vaddr >= thread.userspace_stack_bottom() && vaddr + size <= thread.userspace_stack_top())
return {};
// FIXME: should we allow cross mapping access?

View File

@ -13,14 +13,13 @@ namespace Kernel
static ProcessorID read_processor_id()
{
uint8_t id;
uint32_t id;
asm volatile(
"movl $1, %%eax;"
"cpuid;"
"shrl $24, %%ebx;"
"movb %%bl, %0;"
: "=rm"(id)
:: "eax", "ebx", "ecx", "edx"
: "=b"(id)
:: "eax", "ecx", "edx"
);
return id;
}
@ -39,7 +38,7 @@ namespace Kernel
processor.m_stack = kmalloc(s_stack_size, 4096, true);
ASSERT(processor.m_stack);
processor.m_gdt = GDT::create();
processor.m_gdt = GDT::create(&processor);
ASSERT(processor.m_gdt);
processor.m_idt = IDT::create();
@ -53,12 +52,19 @@ namespace Kernel
auto id = read_processor_id();
auto& processor = s_processors[id];
ASSERT(processor.m_gdt);
processor.m_gdt->load();
// initialize GS
#if ARCH(x86_64)
// set gs base to pointer to this processor
uint64_t ptr = reinterpret_cast<uint64_t>(&processor);
asm volatile("wrmsr" :: "d"(ptr >> 32), "a"(ptr), "c"(MSR_IA32_GS_BASE));
ASSERT(processor.m_gdt);
processor.gdt().load();
uint32_t ptr_hi = ptr >> 32;
uint32_t ptr_lo = ptr & 0xFFFFFFFF;
asm volatile("wrmsr" :: "d"(ptr_hi), "a"(ptr_lo), "c"(MSR_IA32_GS_BASE));
#elif ARCH(i686)
asm volatile("movw $0x28, %%ax; movw %%ax, %%gs" ::: "ax");
#endif
ASSERT(processor.m_idt);
processor.idt().load();
@ -73,4 +79,34 @@ namespace Kernel
write_gs_ptr(offsetof(Processor, m_idle_thread), idle_thread);
}
void Processor::enter_interrupt(InterruptStack* interrupt_stack, InterruptRegisters* interrupt_registers)
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_stack)) == nullptr);
write_gs_ptr(offsetof(Processor, m_interrupt_stack), interrupt_stack);
write_gs_ptr(offsetof(Processor, m_interrupt_registers), interrupt_registers);
}
void Processor::leave_interrupt()
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_stack)) != nullptr);
write_gs_ptr(offsetof(Processor, m_interrupt_stack), nullptr);
write_gs_ptr(offsetof(Processor, m_interrupt_registers), nullptr);
}
InterruptStack& Processor::get_interrupt_stack()
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_stack)));
return *read_gs_sized<InterruptStack*>(offsetof(Processor, m_interrupt_stack));
}
InterruptRegisters& Processor::get_interrupt_registers()
{
ASSERT(get_interrupt_state() == InterruptState::Disabled);
ASSERT(read_gs_ptr(offsetof(Processor, m_interrupt_registers)));
return *read_gs_sized<InterruptRegisters*>(offsetof(Processor, m_interrupt_registers));
}
}

View File

@ -20,7 +20,19 @@ namespace Kernel
if (ecx & CPUID::ECX_RDRND)
{
asm volatile("rdrand %0" : "=a"(s_rand_seed));
#if ARCH(x86_64)
asm volatile("rdrand %0" : "=r"(s_rand_seed));
#elif ARCH(i686)
uint32_t lo, hi;
asm volatile(
"rdrand %[lo];"
"rdrand %[hi];"
: [lo]"=r"(lo), [hi]"=r"(hi)
);
s_rand_seed = ((uint64_t)hi << 32) | lo;
#else
#error
#endif
dprintln("RNG seeded by RDRAND");
}
else

View File

@ -11,17 +11,9 @@
namespace Kernel
{
extern "C" [[noreturn]] void start_thread(uintptr_t rsp, uintptr_t rip);
extern "C" [[noreturn]] void continue_thread(uintptr_t rsp, uintptr_t rip);
static Scheduler* s_instance = nullptr;
static BAN::Atomic<bool> s_started { false };
ALWAYS_INLINE static void load_temp_stack()
{
asm volatile("movq %0, %%rsp" :: "rm"(Processor::current_stack_top()));
}
BAN::ErrorOr<void> Scheduler::initialize()
{
ASSERT(s_instance == nullptr);
@ -40,10 +32,8 @@ namespace Kernel
void Scheduler::start()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
m_lock.lock();
s_started = true;
advance_current_thread();
execute_current_thread_locked();
ASSERT(!m_active_threads.empty());
yield();
ASSERT_NOT_REACHED();
}
@ -65,41 +55,138 @@ namespace Kernel
return Scheduler::get().current_thread().tid();
}
void Scheduler::setup_next_thread()
{
ASSERT(m_lock.current_processor_has_lock());
if (auto* current = Processor::get_current_thread())
{
auto* thread = current->thread;
if (thread->state() == Thread::State::Terminated)
{
PageTable::kernel().load();
delete thread;
delete current;
}
else
{
// thread->state() can be NotStarted when calling exec or cleaning up process
if (thread->state() != Thread::State::NotStarted)
{
thread->interrupt_stack() = Processor::get_interrupt_stack();
thread->interrupt_registers() = Processor::get_interrupt_registers();
}
if (current->should_block)
{
current->should_block = false;
m_blocking_threads.add_with_wake_time(current);
}
else
{
m_active_threads.push_back(current);
}
}
}
SchedulerQueue::Node* node = nullptr;
while (!m_active_threads.empty())
{
node = m_active_threads.pop_front();
if (node->thread->state() != Thread::State::Terminated)
break;
PageTable::kernel().load();
delete node->thread;
delete node;
node = nullptr;
}
Processor::set_current_thread(node);
auto* thread = node ? node->thread : Processor::idle_thread();
if (thread->has_process())
thread->process().page_table().load();
else
PageTable::kernel().load();
if (thread->state() == Thread::State::NotStarted)
thread->m_state = Thread::State::Executing;
Processor::gdt().set_tss_stack(thread->kernel_stack_top());
Processor::get_interrupt_stack() = thread->interrupt_stack();
Processor::get_interrupt_registers() = thread->interrupt_registers();
}
void Scheduler::timer_reschedule()
{
// Broadcast IPI to all other processors for them
// to perform reschedule
InterruptController::get().broadcast_ipi();
auto state = m_lock.lock();
m_blocking_threads.remove_with_wake_time(m_active_threads, SystemTimer::get().ms_since_boot());
if (save_current_thread())
return Processor::set_interrupt_state(state);
advance_current_thread();
execute_current_thread_locked();
ASSERT_NOT_REACHED();
{
SpinLockGuard _(m_lock);
m_blocking_threads.remove_with_wake_time(m_active_threads, SystemTimer::get().ms_since_boot());
}
yield();
}
void Scheduler::reschedule()
void Scheduler::yield()
{
auto state = m_lock.lock();
if (save_current_thread())
return Processor::set_interrupt_state(state);
advance_current_thread();
execute_current_thread_locked();
ASSERT_NOT_REACHED();
auto state = Processor::get_interrupt_state();
Processor::set_interrupt_state(InterruptState::Disabled);
#if ARCH(x86_64)
asm volatile(
"movq %%rsp, %%rcx;"
"movq %[load_sp], %%rsp;"
"int %[ipi];"
"movq %%rcx, %%rsp;"
// NOTE: This is offset by 2 pointers since interrupt without PL change
// does not push SP and SS. This allows accessing "whole" interrupt stack.
:: [load_sp]"r"(Processor::current_stack_top() - 2 * sizeof(uintptr_t)),
[ipi]"i"(IRQ_VECTOR_BASE + IRQ_IPI)
: "memory", "rcx"
);
#elif ARCH(i686)
asm volatile(
"movl %%esp, %%ecx;"
"movl %[load_sp], %%esp;"
"int %[ipi];"
"movl %%ecx, %%esp;"
// NOTE: This is offset by 2 pointers since interrupt without PL change
// does not push SP and SS. This allows accessing "whole" interrupt stack.
:: [load_sp]"r"(Processor::current_stack_top() - 2 * sizeof(uintptr_t)),
[ipi]"i"(IRQ_VECTOR_BASE + IRQ_IPI)
: "memory", "ecx"
);
#else
#error
#endif
Processor::set_interrupt_state(state);
}
void Scheduler::irq_reschedule()
{
SpinLockGuard _(m_lock);
setup_next_thread();
}
void Scheduler::reschedule_if_idling()
{
auto state = m_lock.lock();
if (m_active_threads.empty() || Processor::get_current_thread())
return m_lock.unlock(state);
if (save_current_thread())
return Processor::set_interrupt_state(state);
advance_current_thread();
execute_current_thread_locked();
ASSERT_NOT_REACHED();
{
SpinLockGuard _(m_lock);
if (Processor::get_current_thread())
return;
if (m_active_threads.empty())
return;
}
yield();
}
BAN::ErrorOr<void> Scheduler::add_thread(Thread* thread)
@ -114,180 +201,49 @@ namespace Kernel
void Scheduler::terminate_thread(Thread* thread)
{
SpinLockGuard _(m_lock);
auto state = m_lock.lock();
ASSERT(thread->state() == Thread::State::Executing);
thread->m_state = Thread::State::Terminated;
if (thread == &current_thread())
execute_current_thread_locked();
}
thread->interrupt_stack().sp = Processor::current_stack_top();
void Scheduler::advance_current_thread()
{
ASSERT(m_lock.current_processor_has_lock());
m_lock.unlock(InterruptState::Disabled);
if (auto* current = Processor::get_current_thread())
m_active_threads.push_back(current);
Processor::set_current_thread(nullptr);
// actual deletion will be done while rescheduling
if (!m_active_threads.empty())
Processor::set_current_thread(m_active_threads.pop_front());
}
// NOTE: this is declared always inline, so we don't corrupt the stack
// after getting the rsp
ALWAYS_INLINE bool Scheduler::save_current_thread()
{
ASSERT(m_lock.current_processor_has_lock());
uintptr_t rsp, rip;
push_callee_saved();
if (!(rip = read_rip()))
if (&current_thread() == thread)
{
pop_callee_saved();
return true;
}
read_rsp(rsp);
Thread& current = current_thread();
current.set_rip(rip);
current.set_rsp(rsp);
load_temp_stack();
return false;
}
void Scheduler::delete_current_process_and_thread()
{
m_lock.lock();
load_temp_stack();
PageTable::kernel().load();
auto* current = Processor::get_current_thread();
ASSERT(current);
delete &current->thread->process();
delete current->thread;
delete current;
Processor::set_current_thread(nullptr);
advance_current_thread();
execute_current_thread_locked();
ASSERT_NOT_REACHED();
}
void Scheduler::execute_current_thread()
{
m_lock.lock();
load_temp_stack();
PageTable::kernel().load();
execute_current_thread_stack_loaded();
ASSERT_NOT_REACHED();
}
void Scheduler::execute_current_thread_locked()
{
ASSERT(m_lock.current_processor_has_lock());
load_temp_stack();
PageTable::kernel().load();
execute_current_thread_stack_loaded();
ASSERT_NOT_REACHED();
}
NEVER_INLINE void Scheduler::execute_current_thread_stack_loaded()
{
ASSERT(m_lock.current_processor_has_lock());
#if SCHEDULER_VERIFY_STACK
vaddr_t rsp;
read_rsp(rsp);
ASSERT(Processor::current_stack_bottom() <= rsp && rsp <= Processor::current_stack_top());
ASSERT(&PageTable::current() == &PageTable::kernel());
#endif
Thread* current = &current_thread();
#if __enable_sse
if (current != Thread::sse_thread())
{
asm volatile(
"movq %cr0, %rax;"
"orq $(1 << 3), %rax;"
"movq %rax, %cr0"
);
}
#endif
while (current->state() == Thread::State::Terminated)
{
auto* node = Processor::get_current_thread();
if (node->thread->has_process())
if (node->thread->process().on_thread_exit(*node->thread))
break;
delete node->thread;
delete node;
Processor::set_current_thread(nullptr);
advance_current_thread();
current = &current_thread();
yield();
ASSERT_NOT_REACHED();
}
if (current->has_process())
{
current->process().page_table().load();
Processor::gdt().set_tss_stack(current->interrupt_stack_base() + current->interrupt_stack_size());
}
else
PageTable::kernel().load();
switch (current->state())
{
case Thread::State::NotStarted:
current->set_started();
m_lock.unlock(InterruptState::Disabled);
start_thread(current->rsp(), current->rip());
case Thread::State::Executing:
m_lock.unlock(InterruptState::Disabled);
while (current->can_add_signal_to_execute())
current->handle_signal();
continue_thread(current->rsp(), current->rip());
case Thread::State::Terminated:
ASSERT_NOT_REACHED();
}
ASSERT_NOT_REACHED();
Processor::set_interrupt_state(state);
}
void Scheduler::set_current_thread_sleeping_impl(Semaphore* semaphore, uint64_t wake_time)
{
ASSERT(m_lock.current_processor_has_lock());
if (save_current_thread())
return;
auto state = m_lock.lock();
auto* current = Processor::get_current_thread();
current->semaphore = semaphore;
current->wake_time = wake_time;
m_blocking_threads.add_with_wake_time(current);
Processor::set_current_thread(nullptr);
current->should_block = true;
advance_current_thread();
execute_current_thread_locked();
ASSERT_NOT_REACHED();
m_lock.unlock(InterruptState::Disabled);
yield();
Processor::set_interrupt_state(state);
}
void Scheduler::set_current_thread_sleeping(uint64_t wake_time)
{
auto state = m_lock.lock();
set_current_thread_sleeping_impl(nullptr, wake_time);
Processor::set_interrupt_state(state);
}
void Scheduler::block_current_thread(Semaphore* semaphore, uint64_t wake_time)
{
auto state = m_lock.lock();
set_current_thread_sleeping_impl(semaphore, wake_time);
Processor::set_interrupt_state(state);
}
void Scheduler::unblock_threads(Semaphore* semaphore)

View File

@ -70,11 +70,11 @@ namespace Kernel
stop_cmd(m_port);
paddr_t fis_paddr = m_dma_region->paddr();
uint64_t fis_paddr = m_dma_region->paddr();
m_port->fb = fis_paddr & 0xFFFFFFFF;
m_port->fbu = fis_paddr >> 32;
paddr_t command_list_paddr = fis_paddr + sizeof(ReceivedFIS);
uint64_t command_list_paddr = fis_paddr + sizeof(ReceivedFIS);
m_port->clb = command_list_paddr & 0xFFFFFFFF;
m_port->clbu = command_list_paddr >> 32;
@ -168,7 +168,7 @@ namespace Kernel
// This doesn't allow scheduler to go properly idle.
while (SystemTimer::get().ms_since_boot() < start_time + s_ata_timeout)
{
Scheduler::get().reschedule();
Scheduler::get().yield();
if (!(m_port->ci & (1 << command_slot)))
return {};
}
@ -236,8 +236,9 @@ namespace Kernel
volatile auto& command_table = *reinterpret_cast<HBACommandTable*>(m_dma_region->paddr_to_vaddr(command_header.ctba));
memset(const_cast<HBACommandTable*>(&command_table), 0x00, sizeof(HBACommandTable));
command_table.prdt_entry[0].dba = m_data_dma_region->paddr() & 0xFFFFFFFF;
command_table.prdt_entry[0].dbau = m_data_dma_region->paddr() >> 32;
uint64_t data_dma_paddr64 = m_data_dma_region->paddr();
command_table.prdt_entry[0].dba = data_dma_paddr64 & 0xFFFFFFFF;
command_table.prdt_entry[0].dbau = data_dma_paddr64 >> 32;
command_table.prdt_entry[0].dbc = sector_count * sector_size() - 1;
command_table.prdt_entry[0].i = 1;

View File

@ -63,7 +63,7 @@ namespace Kernel
for (uint64_t i = 0; i < sector_count;)
{
uint16_t count = BAN::Math::min(sector_count - i, m_dma_region->size() / m_block_size);
uint16_t count = BAN::Math::min<uint64_t>(sector_count - i, m_dma_region->size() / m_block_size);
NVMe::SubmissionQueueEntry sqe {};
sqe.opc = NVMe::OPC_IO_READ;
@ -90,7 +90,7 @@ namespace Kernel
for (uint64_t i = 0; i < sector_count;)
{
uint16_t count = BAN::Math::min(sector_count - i, m_dma_region->size() / m_block_size);
uint16_t count = BAN::Math::min<uint16_t>(sector_count - i, m_dma_region->size() / m_block_size);
memcpy(reinterpret_cast<void*>(m_dma_region->vaddr()), buffer.data() + i * m_block_size, count * m_block_size);

View File

@ -15,8 +15,8 @@ namespace Kernel
, m_doorbell(db)
, m_qdepth(qdepth)
{
for (uint32_t i = qdepth; i < 64; i++)
m_used_mask |= (uint64_t)1 << i;
for (uint32_t i = qdepth; i < m_mask_bits; i++)
m_used_mask |= (size_t)1 << i;
set_irq(irq);
enable_interrupt();
}
@ -29,8 +29,8 @@ namespace Kernel
{
uint16_t sts = cq_ptr[m_cq_head].sts >> 1;
uint16_t cid = cq_ptr[m_cq_head].cid;
uint64_t cid_mask = (uint64_t)1 << cid;
ASSERT(cid < 64);
size_t cid_mask = (size_t)1 << cid;
ASSERT(cid < m_mask_bits);
ASSERT((m_done_mask & cid_mask) == 0);
@ -50,7 +50,7 @@ namespace Kernel
uint16_t NVMeQueue::submit_command(NVMe::SubmissionQueueEntry& sqe)
{
uint16_t cid = reserve_cid();
uint64_t cid_mask = (uint64_t)1 << cid;
size_t cid_mask = (size_t)1 << cid;
{
SpinLockGuard _(m_lock);
@ -98,13 +98,13 @@ namespace Kernel
}
uint16_t cid = 0;
for (; cid < 64; cid++)
if ((m_used_mask & ((uint64_t)1 << cid)) == 0)
for (; cid < m_mask_bits; cid++)
if ((m_used_mask & ((size_t)1 << cid)) == 0)
break;
ASSERT(cid < 64);
ASSERT(cid < m_mask_bits);
ASSERT(cid < m_qdepth);
m_used_mask |= (uint64_t)1 << cid;
m_used_mask |= (size_t)1 << cid;
m_lock.unlock(state);
return cid;

View File

@ -10,9 +10,9 @@
namespace Kernel
{
extern "C" long sys_fork(uintptr_t rsp, uintptr_t rip)
extern "C" long sys_fork(uintptr_t sp, uintptr_t ip)
{
auto ret = Process::current().sys_fork(rsp, rip);
auto ret = Process::current().sys_fork(sp, ip);
if (ret.is_error())
return -ret.error().get_error_code();
return ret.value();
@ -28,12 +28,9 @@ namespace Kernel
#undef O
};
extern "C" long cpp_syscall_handler(int syscall, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, uintptr_t arg4, uintptr_t arg5, InterruptStack& interrupt_stack)
extern "C" long cpp_syscall_handler(int syscall, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, uintptr_t arg4, uintptr_t arg5, InterruptStack* interrupt_stack)
{
ASSERT((interrupt_stack.cs & 0b11) == 0b11);
Thread::current().set_return_rsp(interrupt_stack.rsp);
Thread::current().set_return_rip(interrupt_stack.rip);
ASSERT(GDT::is_user_segment(interrupt_stack->cs));
asm volatile("sti");

View File

@ -12,19 +12,26 @@
namespace Kernel
{
extern "C" void thread_userspace_trampoline(uint64_t rsp, uint64_t rip, int argc, char** argv, char** envp);
extern "C" uintptr_t read_rip();
extern "C" [[noreturn]] void start_kernel_thread();
extern "C" [[noreturn]] void start_userspace_thread();
extern "C" void signal_trampoline();
template<typename T>
static void write_to_stack(uintptr_t& rsp, const T& value)
static void write_to_stack(uintptr_t& rsp, const T& value) requires(sizeof(T) <= sizeof(uintptr_t))
{
rsp -= sizeof(uintptr_t);
if constexpr(sizeof(T) < sizeof(uintptr_t))
*(uintptr_t*)rsp = (uintptr_t)value;
else
memcpy((void*)rsp, (void*)&value, sizeof(uintptr_t));
*(uintptr_t*)rsp = (uintptr_t)value;
}
extern "C" uintptr_t get_thread_start_sp()
{
return Thread::current().interrupt_stack().sp;
}
extern "C" uintptr_t get_userspace_thread_stack_top()
{
return Thread::current().userspace_stack_top() - 4 * sizeof(uintptr_t);
}
static pid_t s_next_tid = 1;
@ -38,7 +45,7 @@ namespace Kernel
BAN::ScopeGuard thread_deleter([thread] { delete thread; });
// Initialize stack and registers
thread->m_stack = TRY(VirtualRange::create_to_vaddr_range(
thread->m_kernel_stack = TRY(VirtualRange::create_to_vaddr_range(
PageTable::kernel(),
KERNEL_OFFSET,
~(uintptr_t)0,
@ -46,14 +53,21 @@ namespace Kernel
PageTable::Flags::ReadWrite | PageTable::Flags::Present,
true
));
thread->m_rsp = thread->stack_base() + thread->stack_size();
thread->m_rip = (uintptr_t)entry;
// Initialize stack for returning
write_to_stack(thread->m_rsp, nullptr); // alignment
write_to_stack(thread->m_rsp, thread);
write_to_stack(thread->m_rsp, &Thread::on_exit);
write_to_stack(thread->m_rsp, data);
uintptr_t sp = thread->kernel_stack_top();
write_to_stack(sp, thread);
write_to_stack(sp, &Thread::on_exit_trampoline);
write_to_stack(sp, data);
write_to_stack(sp, entry);
thread->m_interrupt_stack.ip = reinterpret_cast<vaddr_t>(start_kernel_thread);
thread->m_interrupt_stack.cs = 0x08;
thread->m_interrupt_stack.flags = 0x002;
thread->m_interrupt_stack.sp = sp;
thread->m_interrupt_stack.ss = 0x10;
memset(&thread->m_interrupt_registers, 0, sizeof(InterruptRegisters));
thread_deleter.disable();
@ -72,7 +86,15 @@ namespace Kernel
thread->m_is_userspace = true;
thread->m_stack = TRY(VirtualRange::create_to_vaddr_range(
thread->m_kernel_stack = TRY(VirtualRange::create_to_vaddr_range(
process->page_table(),
0x300000, KERNEL_OFFSET,
m_kernel_stack_size,
PageTable::Flags::ReadWrite | PageTable::Flags::Present,
true
));
thread->m_userspace_stack = TRY(VirtualRange::create_to_vaddr_range(
process->page_table(),
0x300000, KERNEL_OFFSET,
m_userspace_stack_size,
@ -80,14 +102,6 @@ namespace Kernel
true
));
thread->m_interrupt_stack = TRY(VirtualRange::create_to_vaddr_range(
process->page_table(),
0x300000, KERNEL_OFFSET,
m_interrupt_stack_size,
PageTable::Flags::ReadWrite | PageTable::Flags::Present,
true
));
thread->setup_exec();
thread_deleter.disable();
@ -99,16 +113,33 @@ namespace Kernel
: m_tid(tid), m_process(process)
{
#if __enable_sse
#if ARCH(x86_64)
uintptr_t cr0;
asm volatile(
"movq %%cr0, %%rax;"
"movq %%rax, %%rbx;"
"movq %%rax, %[cr0];"
"andq $~(1 << 3), %%rax;"
"movq %%rax, %%cr0;"
: "=b"(cr0)
: [cr0]"=r"(cr0)
:: "rax"
);
save_sse();
asm volatile("movq %0, %%cr0" :: "r"(cr0));
#elif ARCH(i686)
uintptr_t cr0;
asm volatile(
"movl %%cr0, %%eax;"
"movl %%eax, %[cr0];"
"andl $~(1 << 3), %%eax;"
"movl %%eax, %%cr0;"
: [cr0]"=r"(cr0)
:: "eax"
);
save_sse();
asm volatile("movl %0, %%cr0" :: "r"(cr0));
#else
#error
#endif
#endif
}
@ -123,11 +154,22 @@ namespace Kernel
return *m_process;
}
Thread::~Thread()
const Process& Thread::process() const
{
ASSERT(m_process);
return *m_process;
}
BAN::ErrorOr<Thread*> Thread::clone(Process* new_process, uintptr_t rsp, uintptr_t rip)
Thread::~Thread()
{
if (m_delete_process)
{
ASSERT(m_process);
delete m_process;
}
}
BAN::ErrorOr<Thread*> Thread::clone(Process* new_process, uintptr_t sp, uintptr_t ip)
{
ASSERT(m_is_userspace);
ASSERT(m_state == State::Executing);
@ -139,13 +181,22 @@ namespace Kernel
thread->m_is_userspace = true;
thread->m_interrupt_stack = TRY(m_interrupt_stack->clone(new_process->page_table()));
thread->m_stack = TRY(m_stack->clone(new_process->page_table()));
thread->m_kernel_stack = TRY(m_kernel_stack->clone(new_process->page_table()));
thread->m_userspace_stack = TRY(m_userspace_stack->clone(new_process->page_table()));
thread->m_state = State::Executing;
thread->m_state = State::NotStarted;
thread->m_rip = rip;
thread->m_rsp = rsp;
thread->m_interrupt_stack.ip = ip;
thread->m_interrupt_stack.cs = 0x08;
thread->m_interrupt_stack.flags = 0x002;
thread->m_interrupt_stack.sp = sp;
thread->m_interrupt_stack.ss = 0x10;
#if ARCH(x86_64)
thread->m_interrupt_registers.rax = 0;
#elif ARCH(i686)
thread->m_interrupt_registers.eax = 0;
#endif
thread_deleter.disable();
@ -156,58 +207,69 @@ namespace Kernel
{
ASSERT(is_userspace());
m_state = State::NotStarted;
static entry_t entry_trampoline(
[](void*)
{
const auto& info = Process::current().userspace_info();
thread_userspace_trampoline(Thread::current().rsp(), info.entry, info.argc, info.argv, info.envp);
ASSERT_NOT_REACHED();
}
);
m_rsp = stack_base() + stack_size();
m_rip = (uintptr_t)entry_trampoline;
// Signal mask is inherited
// Setup stack for returning
ASSERT(m_rsp % PAGE_SIZE == 0);
PageTable::with_fast_page(process().page_table().physical_address_of(m_rsp - PAGE_SIZE), [&] {
uintptr_t rsp = PageTable::fast_page() + PAGE_SIZE;
write_to_stack(rsp, nullptr); // alignment
write_to_stack(rsp, this);
write_to_stack(rsp, &Thread::on_exit);
write_to_stack(rsp, nullptr);
m_rsp -= 4 * sizeof(uintptr_t);
auto& userspace_info = process().userspace_info();
ASSERT(userspace_info.entry);
// Initialize stack for returning
PageTable::with_fast_page(process().page_table().physical_address_of(kernel_stack_top() - PAGE_SIZE), [&] {
uintptr_t sp = PageTable::fast_page() + PAGE_SIZE;
write_to_stack(sp, userspace_info.entry);
write_to_stack(sp, userspace_info.argc);
write_to_stack(sp, userspace_info.argv);
write_to_stack(sp, userspace_info.envp);
});
m_interrupt_stack.ip = reinterpret_cast<vaddr_t>(start_userspace_thread);;
m_interrupt_stack.cs = 0x08;
m_interrupt_stack.flags = 0x002;
m_interrupt_stack.sp = kernel_stack_top() - 4 * sizeof(uintptr_t);
m_interrupt_stack.ss = 0x10;
memset(&m_interrupt_registers, 0, sizeof(InterruptRegisters));
}
void Thread::setup_process_cleanup()
{
ASSERT(Processor::get_interrupt_state() == InterruptState::Disabled);
m_state = State::NotStarted;
static entry_t entry(
[](void* process_ptr)
{
auto& process = *reinterpret_cast<Process*>(process_ptr);
process.cleanup_function();
Scheduler::get().delete_current_process_and_thread();
ASSERT_NOT_REACHED();
auto* thread = &Thread::current();
auto* process = static_cast<Process*>(process_ptr);
ASSERT(thread->m_process == process);
process->cleanup_function();
thread->m_delete_process = true;
// will call on thread exit after return
}
);
m_rsp = stack_base() + stack_size();
m_rip = (uintptr_t)entry;
m_signal_pending_mask = 0;
m_signal_block_mask = ~0ull;
ASSERT(m_rsp % PAGE_SIZE == 0);
PageTable::with_fast_page(process().page_table().physical_address_of(m_rsp - PAGE_SIZE), [&] {
uintptr_t rsp = PageTable::fast_page() + PAGE_SIZE;
write_to_stack(rsp, nullptr); // alignment
write_to_stack(rsp, this);
write_to_stack(rsp, &Thread::on_exit);
write_to_stack(rsp, m_process);
m_rsp -= 4 * sizeof(uintptr_t);
PageTable::with_fast_page(process().page_table().physical_address_of(kernel_stack_top() - PAGE_SIZE), [&] {
uintptr_t sp = PageTable::fast_page() + PAGE_SIZE;
write_to_stack(sp, this);
write_to_stack(sp, &Thread::on_exit_trampoline);
write_to_stack(sp, m_process);
write_to_stack(sp, entry);
});
m_interrupt_stack.ip = reinterpret_cast<vaddr_t>(start_kernel_thread);
m_interrupt_stack.cs = 0x08;
m_interrupt_stack.flags = 0x202;
m_interrupt_stack.sp = kernel_stack_top() - 4 * sizeof(uintptr_t);
m_interrupt_stack.ss = 0x10;
memset(&m_interrupt_registers, 0, sizeof(InterruptRegisters));
}
bool Thread::is_interrupted_by_signal()
@ -221,10 +283,10 @@ namespace Kernel
{
if (!is_userspace() || m_state != State::Executing)
return false;
auto& interrupt_stack = *reinterpret_cast<InterruptStack*>(interrupt_stack_base() + interrupt_stack_size() - sizeof(InterruptStack));
auto& interrupt_stack = *reinterpret_cast<InterruptStack*>(kernel_stack_top() - sizeof(InterruptStack));
if (!GDT::is_user_segment(interrupt_stack.cs))
return false;
uint64_t full_pending_mask = m_signal_pending_mask | m_process->m_signal_pending_mask;
uint64_t full_pending_mask = m_signal_pending_mask | process().signal_pending_mask();;
return full_pending_mask & ~m_signal_block_mask;
}
@ -232,8 +294,8 @@ namespace Kernel
{
if (!is_userspace() || m_state != State::Executing)
return false;
auto& interrupt_stack = *reinterpret_cast<InterruptStack*>(interrupt_stack_base() + interrupt_stack_size() - sizeof(InterruptStack));
return interrupt_stack.rip == (uintptr_t)signal_trampoline;
auto& interrupt_stack = *reinterpret_cast<InterruptStack*>(kernel_stack_top() - sizeof(InterruptStack));
return interrupt_stack.ip == (uintptr_t)signal_trampoline;
}
void Thread::handle_signal(int signal)
@ -243,12 +305,12 @@ namespace Kernel
SpinLockGuard _(m_signal_lock);
auto& interrupt_stack = *reinterpret_cast<InterruptStack*>(interrupt_stack_base() + interrupt_stack_size() - sizeof(InterruptStack));
auto& interrupt_stack = *reinterpret_cast<InterruptStack*>(kernel_stack_top() - sizeof(InterruptStack));
ASSERT(GDT::is_user_segment(interrupt_stack.cs));
if (signal == 0)
{
uint64_t full_pending_mask = m_signal_pending_mask | process().m_signal_pending_mask;
uint64_t full_pending_mask = m_signal_pending_mask | process().signal_pending_mask();
for (signal = _SIGMIN; signal <= _SIGMAX; signal++)
{
uint64_t mask = 1ull << signal;
@ -266,18 +328,18 @@ namespace Kernel
vaddr_t signal_handler = process().m_signal_handlers[signal];
m_signal_pending_mask &= ~(1ull << signal);
process().m_signal_pending_mask &= ~(1ull << signal);
process().remove_pending_signal(signal);
if (signal_handler == (vaddr_t)SIG_IGN)
;
else if (signal_handler != (vaddr_t)SIG_DFL)
{
// call userspace signal handlers
interrupt_stack.rsp -= 128; // skip possible red-zone
write_to_stack(interrupt_stack.rsp, interrupt_stack.rip);
write_to_stack(interrupt_stack.rsp, signal);
write_to_stack(interrupt_stack.rsp, signal_handler);
interrupt_stack.rip = (uintptr_t)signal_trampoline;
interrupt_stack.sp -= 128; // skip possible red-zone
write_to_stack(interrupt_stack.sp, interrupt_stack.ip);
write_to_stack(interrupt_stack.sp, signal);
write_to_stack(interrupt_stack.sp, signal_handler);
interrupt_stack.ip = (uintptr_t)signal_trampoline;
}
else
{
@ -373,22 +435,29 @@ namespace Kernel
return {};
}
void Thread::validate_stack() const
void Thread::on_exit_trampoline(Thread* thread)
{
if (stack_base() <= m_rsp && m_rsp <= stack_base() + stack_size())
return;
if (interrupt_stack_base() <= m_rsp && m_rsp <= interrupt_stack_base() + interrupt_stack_size())
return;
Kernel::panic("rsp {8H}, stack {8H}->{8H}, interrupt_stack {8H}->{8H}", m_rsp,
stack_base(), stack_base() + stack_size(),
interrupt_stack_base(), interrupt_stack_base() + interrupt_stack_size()
);
thread->on_exit();
}
void Thread::on_exit()
{
ASSERT(this == &Thread::current());
Scheduler::get().terminate_thread(this);
if (!m_delete_process && has_process())
{
if (process().on_thread_exit(*this))
{
Processor::set_interrupt_state(InterruptState::Disabled);
setup_process_cleanup();
Scheduler::get().yield();
}
else
Scheduler::get().terminate_thread(this);
}
else
{
Scheduler::get().terminate_thread(this);
}
ASSERT_NOT_REACHED();
}

View File

@ -1,33 +0,0 @@
.section .text
.global _start
_start:
# zero out stack frame
pushl $0
pushl $0
movl %esp, %ebp
# FIXME: handle stack alignment
ud2
# push argc, argv, environ for call to main
pushl %edx
pushl %esi
pushl %edi
# initialize libc
pushl %edx
call _init_libc
addl $4, %esp
# call global constructos
call _init
# call main, arguments are already on stack
call main
# cleanly exit the process
pushl %eax
call exit
.size _start, . - _start

34
libc/arch/i686/crt0.S Normal file
View File

@ -0,0 +1,34 @@
.section .text
.global _start
_start:
pushl $0
pushl %edi
pushl %esi
pushl %edx
# STACK LAYOUT
# null
# argc
# argv
# envp
xorl %ebp, %ebp
# init libc (envp already as argument)
call _init_libc
# call global constructors
call _init
# call main
movl 0(%esp), %eax
xchgl %eax, 8(%esp)
movl %eax, (%esp)
call main
subl $12, %esp
pushl %eax
call exit
.size _start, . - _start

View File

@ -1,4 +1,4 @@
/* i386 crti.s */
/* i686 crti.s */
.section .init
.global _init
.type _init, @function

View File

@ -1,4 +1,4 @@
/* i386 crtn.s */
/* i686 crtn.s */
.section .init
/* gcc will nicely put the contents of crtend.o's .init section here. */
popl %ebp

View File

@ -2,34 +2,34 @@
.global _start
_start:
# Set up end of the stack frame linked list.
movq $0, %rbp
pushq %rbp # rip=0
pushq %rbp # rbp=0
movq %rsp, %rbp
# Save argc, argv, environ
pushq %rdx
pushq %rsi
pushq $0
pushq %rdi
pushq %rsi
pushq %rdx
# Prepare malloc, environment
movq %rdx, %rdi
# STACK LAYOUT
# null
# argc
# argv
# envp
xorq %rbp, %rbp
# init libc
movq 0(%rsp), %rdi
call _init_libc
# Call global constructos
# call global constructors
call _init
# Restore argc, argv, environ
popq %rdi
popq %rsi
popq %rdx
# Run main
# call main
movq 16(%rsp), %rdi
movq 8(%rsp), %rsi
movq 0(%rsp), %rdx
call main
# Cleanly exit the process
movl %eax, %edi
# call exit
movq %rax, %rdi
call exit
.size _start, . - _start

View File

@ -1,37 +1,41 @@
#include <icxxabi.h>
#include <BAN/Assert.h>
#include <stdint.h>
#include <stddef.h>
#define ATEXIT_MAX_FUNCS 128
struct atexit_func_entry_t
{
void (*destructor)(void*);
void* data;
void(*func)(void*);
void* arg;
void* dso_handle;
};
static atexit_func_entry_t __atexit_funcs[ATEXIT_MAX_FUNCS];
static int __atexit_func_count = 0;
static size_t __atexit_func_count = 0;
int __cxa_atexit(void (*func)(void*), void* data, void* dso_handle)
extern "C" int __cxa_atexit(void(*func)(void*), void* arg, void* dso_handle)
{
if (__atexit_func_count >= ATEXIT_MAX_FUNCS)
return -1;;
__atexit_funcs[__atexit_func_count].destructor = func;
__atexit_funcs[__atexit_func_count].data = data;
__atexit_funcs[__atexit_func_count].dso_handle = dso_handle;
__atexit_func_count++;
return -1;
auto& atexit_func = __atexit_funcs[__atexit_func_count++];
atexit_func.func = func;
atexit_func.arg = arg;
atexit_func.dso_handle = dso_handle;
return 0;
};
void __cxa_finalize(void* func)
extern "C" void __cxa_finalize(void* f)
{
for (int i = __atexit_func_count - 1; i >= 0; i--)
for (size_t i = __atexit_func_count; i > 0; i--)
{
if (func && func != __atexit_funcs[i].destructor)
auto& atexit_func = __atexit_funcs[i - 1];
if (atexit_func.func == nullptr)
continue;
if (__atexit_funcs[i].destructor == nullptr)
continue;
__atexit_funcs[i].destructor(__atexit_funcs[i].data);
__atexit_funcs[i].destructor = nullptr;
if (f == nullptr || f == atexit_func.func)
{
atexit_func.func(atexit_func.arg);
atexit_func.func = nullptr;
}
}
}
};

View File

@ -2,6 +2,11 @@
set -e
if [[ -z $BANAN_ARCH ]]; then
echo "You must set the BANAN_ARCH environment variable" >&2
exit 1
fi
if [[ -z $BANAN_DISK_IMAGE_PATH ]]; then
echo "You must set the BANAN_DISK_IMAGE_PATH environment variable" >&2
exit 1
@ -26,7 +31,7 @@ ROOT_PARTITION_INDEX=2
ROOT_PARTITION_INFO=$(fdisk -x $BANAN_DISK_IMAGE_PATH | grep "^$BANAN_DISK_IMAGE_PATH" | head -$ROOT_PARTITION_INDEX | tail -1)
ROOT_PARTITION_GUID=$(echo $ROOT_PARTITION_INFO | cut -d' ' -f6)
INSTALLER_BUILD_DIR=$BANAN_ROOT_DIR/bootloader/installer/build
INSTALLER_BUILD_DIR=$BANAN_ROOT_DIR/bootloader/installer/build/$BANAN_ARCH
BOOTLOADER_ELF=$BANAN_BUILD_DIR/bootloader/bios/bootloader
if ! [ -f $BOOTLOADER_ELF ]; then
@ -37,11 +42,11 @@ fi
if ! [ -d $INSTALLER_BUILD_DIR ]; then
mkdir -p $INSTALLER_BUILD_DIR
cd $INSTALLER_BUILD_DIR
$CMAKE_COMMAND ..
$CMAKE_COMMAND ../..
fi
cd $INSTALLER_BUILD_DIR
make
echo installing bootloader
$INSTALLER_BUILD_DIR/x86_64-banan_os-bootloader-installer $BOOTLOADER_ELF $BANAN_DISK_IMAGE_PATH $ROOT_PARTITION_GUID
$INSTALLER_BUILD_DIR/banan_os-bootloader-installer $BOOTLOADER_ELF $BANAN_DISK_IMAGE_PATH $ROOT_PARTITION_GUID

View File

@ -19,7 +19,12 @@ else
DISK_ARGS="-device ahci,id=ahci -device ide-hd,drive=disk,bus=ahci.0"
fi
qemu-system-$BANAN_ARCH \
QEMU_ARCH=$BANAN_ARCH
if [ $BANAN_ARCH = "i686" ]; then
QEMU_ARCH=i386
fi
qemu-system-$QEMU_ARCH \
-m 1G \
-smp 4 \
$BIOS_ARGS \

View File

@ -260,7 +260,7 @@ i64 puzzle2(FILE* fp)
clock_gettime(CLOCK_MONOTONIC, &time_stop);
u64 duration_us = (time_stop.tv_sec * 1'000'000 + time_stop.tv_nsec / 1'000) - (time_start.tv_sec * 1'000'000 + time_start.tv_nsec / 1'000);
printf("took %lu.%03lu ms, estimate %lu s\n", duration_us / 1000, duration_us % 1000, (values_sorted[0].size() - xi - 2) * duration_us / 1'000'000);
printf("step took %" PRIu64 ".%03" PRIu64 " ms, estimate %" PRIu64 " s\n", duration_us / 1000, duration_us % 1000, (values_sorted[0].size() - xi - 2) * duration_us / 1'000'000);
}
return result;

View File

@ -87,7 +87,7 @@ BAN::ErrorOr<BAN::UniqPtr<Image>> load_netbpm(const void* mmap_addr, size_t size
return BAN::Error::from_errno(EINVAL);
}
printf("Netbpm image %" PRIuPTR "x%" PRIuPTR "\n", *width, *height);
printf("Netbpm image %" PRIu64 "x%" PRIu64 "\n", *width, *height);
BAN::Vector<Image::Color> bitmap;
TRY(bitmap.resize(*width * *height));

View File

@ -152,7 +152,7 @@ int test2_job2()
return 1;
}
*(size_t*)addr = 0x123456789;
*(size_t*)addr = 0x12345678;
if (msync(addr, sizeof(size_t), MS_SYNC) == -1)
{