banan-os/userspace/programs/AudioServer/AudioServer.cpp

306 lines
8.9 KiB
C++

#include "AudioServer.h"
#include <sys/banan-os.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <unistd.h>
AudioServer::AudioServer(BAN::Vector<AudioDevice>&& audio_devices)
: m_audio_devices(BAN::move(audio_devices))
{
}
BAN::ErrorOr<void> AudioServer::on_new_client(int fd)
{
TRY(m_audio_buffers.emplace(fd, nullptr));
return {};
}
void AudioServer::on_client_disconnect(int fd)
{
auto it = m_audio_buffers.find(fd);
ASSERT(it != m_audio_buffers.end());
if (it->value.buffer != nullptr)
{
const size_t bytes = sizeof(LibAudio::AudioBuffer) + it->value.buffer->capacity * sizeof(LibAudio::AudioBuffer::sample_t);
munmap(it->value.buffer, bytes);
}
m_audio_buffers.remove(it);
reset_kernel_buffer();
update();
}
bool AudioServer::on_client_packet(int fd, LibAudio::Packet packet)
{
auto& audio_buffer = m_audio_buffers[fd];
BAN::Optional<uint32_t> response;
switch (packet.type)
{
case LibAudio::Packet::Notify:
if (audio_buffer.buffer == nullptr)
break;
reset_kernel_buffer();
update();
break;
case LibAudio::Packet::RegisterBuffer:
if (audio_buffer.buffer)
{
dwarnln("Client tried to map second audio buffer??");
return false;
}
audio_buffer.buffer = static_cast<LibAudio::AudioBuffer*>(smo_map(packet.parameter));
audio_buffer.queued_head = audio_buffer.buffer->tail;
if (audio_buffer.buffer == nullptr)
{
dwarnln("Failed to map audio buffer: {}", strerror(errno));
return false;
}
reset_kernel_buffer();
update();
break;
case LibAudio::Packet::QueryDevices:
response = m_audio_devices.size();
break;
case LibAudio::Packet::QueryPins:
response = device().total_pins;
break;
case LibAudio::Packet::GetDevice:
response = m_current_audio_device;
break;
case LibAudio::Packet::SetDevice:
if (packet.parameter >= m_audio_devices.size())
{
dwarnln("Client tried to set device {} while there are only {}", packet.parameter, m_audio_devices.size());
return false;
}
reset_kernel_buffer();
m_current_audio_device = packet.parameter;
update();
break;
case LibAudio::Packet::GetPin:
response = device().current_pin;
break;
case LibAudio::Packet::SetPin:
if (packet.parameter >= device().total_pins)
{
dwarnln("Client tried to set pin {} while the device only has {}", packet.parameter, device().total_pins);
return false;
}
reset_kernel_buffer();
if (uint32_t pin = packet.parameter; ioctl(device().fd, SND_SET_PIN, &pin) != 0)
dwarnln("Failed to set pin {}: {}", packet.parameter, strerror(errno));
else
device().current_pin = packet.parameter;
update();
break;
default:
dwarnln("unknown packet type {}", static_cast<uint8_t>(packet.type));
return false;
}
if (response.has_value())
if (send(fd, &response.value(), sizeof(uint32_t), 0) != sizeof(uint32_t))
dwarnln("failed to respond to client :(");
return true;
}
uint64_t AudioServer::update()
{
// FIXME: get this from the kernel
static constexpr uint64_t kernel_buffer_ms = 50;
const auto& device = m_audio_devices[m_current_audio_device];
uint32_t kernel_buffer_size;
if (ioctl(device.fd, SND_GET_BUFFERSZ, &kernel_buffer_size) == -1)
ASSERT_NOT_REACHED();
const size_t kernel_samples = kernel_buffer_size / sizeof(int16_t);
ASSERT(kernel_samples <= m_samples_sent);
const uint32_t samples_played = m_samples_sent - kernel_samples;
ASSERT(samples_played % device.channels == 0);
const uint32_t sample_frames_played = samples_played / device.channels;
for (uint32_t i = 0; i < samples_played; i++)
m_samples.pop();
m_samples_sent -= samples_played;
const size_t max_sample_frames = (m_samples.capacity() - m_samples.size()) / device.channels;
const size_t queued_samples_end = m_samples.size();
if (max_sample_frames == 0)
return kernel_buffer_ms;
size_t max_sample_frames_to_queue = max_sample_frames;
bool anyone_playing = false;
for (auto& [_, buffer] : m_audio_buffers)
{
if (buffer.buffer == nullptr)
continue;
if (const size_t sample_frames_queued = buffer.sample_frames_queued())
{
const sample_t sample_ratio = buffer.buffer->sample_rate / static_cast<sample_t>(device.sample_rate);
const uint32_t buffer_sample_frames_played = BAN::Math::min<size_t>(
BAN::Math::ceil(sample_frames_played * sample_ratio),
sample_frames_queued
);
buffer.buffer->tail = (buffer.buffer->tail + buffer_sample_frames_played * buffer.buffer->channels) % buffer.buffer->capacity;
}
if (buffer.buffer->paused)
continue;
anyone_playing = true;
max_sample_frames_to_queue = BAN::Math::min<size_t>(max_sample_frames_to_queue, buffer.sample_frames_available());
}
if (!anyone_playing)
return 60'000;
const uint32_t sample_frames_per_10ms = device.sample_rate / 100;
if (max_sample_frames_to_queue < sample_frames_per_10ms)
{
const uint32_t sample_frames_sent = m_samples_sent / device.channels;
if (sample_frames_sent >= sample_frames_per_10ms)
return 1;
max_sample_frames_to_queue = sample_frames_per_10ms;
}
for (auto& [_, buffer] : m_audio_buffers)
{
if (buffer.buffer == nullptr || buffer.buffer->paused)
continue;
const sample_t sample_ratio = buffer.buffer->sample_rate / static_cast<sample_t>(device.sample_rate);
const size_t sample_frames_to_queue = BAN::Math::min<size_t>(
BAN::Math::ceil(buffer.sample_frames_available() / sample_ratio),
max_sample_frames_to_queue
);
if (sample_frames_to_queue == 0)
continue;
while (m_samples.size() < queued_samples_end + sample_frames_to_queue * device.channels)
m_samples.push(0.0);
const size_t min_channels = BAN::Math::min(device.channels, buffer.buffer->channels);
const size_t buffer_tail = buffer.queued_head;
for (size_t i = 0; i < sample_frames_to_queue; i++)
{
const size_t buffer_frame = i * sample_ratio;
for (size_t j = 0; j < min_channels; j++)
m_samples[queued_samples_end + i * device.channels + j] += buffer.buffer->samples[(buffer_tail + buffer_frame * buffer.buffer->channels + j) % buffer.buffer->capacity];
}
const uint32_t buffer_sample_frames_queued = BAN::Math::min<uint32_t>(
BAN::Math::ceil(sample_frames_to_queue * sample_ratio),
buffer.sample_frames_available()
);
buffer.queued_head = (buffer_tail + buffer_sample_frames_queued * buffer.buffer->channels) % buffer.buffer->capacity;
}
send_samples();
const double play_ms = 1000.0 * m_samples_sent / device.channels / device.sample_rate;
const uint64_t wake_ms = BAN::Math::max<uint64_t>(play_ms, kernel_buffer_ms) - kernel_buffer_ms;
return wake_ms;
}
void AudioServer::reset_kernel_buffer()
{
const auto& device = m_audio_devices[m_current_audio_device];
uint32_t kernel_buffer_size;
if (ioctl(device.fd, SND_RESET_BUFFER, &kernel_buffer_size) != 0)
ASSERT_NOT_REACHED();
const size_t kernel_samples = kernel_buffer_size / sizeof(int16_t);
ASSERT(kernel_samples <= m_samples_sent);
const uint32_t samples_played = m_samples_sent - kernel_samples;
ASSERT(samples_played % device.channels == 0);
const uint32_t sample_frames_played = samples_played / device.channels;
m_samples_sent = 0;
m_samples.clear();
for (auto& [_, buffer] : m_audio_buffers)
{
if (buffer.buffer == nullptr)
continue;
if (const size_t sample_frames_queued = buffer.sample_frames_queued())
{
const sample_t sample_ratio = buffer.buffer->sample_rate / static_cast<sample_t>(device.sample_rate);
const uint32_t buffer_sample_frames_played = BAN::Math::min<size_t>(
BAN::Math::ceil(sample_frames_played * sample_ratio),
sample_frames_queued
);
buffer.buffer->tail = (buffer.buffer->tail + buffer_sample_frames_played * buffer.buffer->channels) % buffer.buffer->capacity;
buffer.queued_head = buffer.buffer->tail;
}
}
}
void AudioServer::send_samples()
{
// FIXME: don't assume kernel uses 16 bit PCM
using kernel_sample_t = int16_t;
if (m_samples_sent >= m_samples.size())
return;
while (m_samples_sent < m_samples.size())
{
const size_t samples_to_send = BAN::Math::min(m_send_buffer.size() / sizeof(kernel_sample_t), m_samples.size() - m_samples_sent);
auto buffer = BAN::ByteSpan(m_send_buffer.data(), samples_to_send * sizeof(kernel_sample_t));
{
auto sample_buffer = buffer.as_span<kernel_sample_t>();
for (size_t i = 0; i < samples_to_send; i++)
{
sample_buffer[i] = BAN::Math::clamp<sample_t>(
0.2 * m_samples[m_samples_sent + i] * BAN::numeric_limits<kernel_sample_t>::max(),
BAN::numeric_limits<kernel_sample_t>::min(),
BAN::numeric_limits<kernel_sample_t>::max()
);
}
}
size_t nwritten = 0;
while (nwritten < buffer.size())
{
const ssize_t nwrite = write(
device().fd,
buffer.data() + nwritten,
buffer.size() - nwritten
);
if (nwrite == -1)
{
if (errno != EAGAIN && errno != EWOULDBLOCK)
dwarnln("write: {}", strerror(errno));
break;
}
nwritten += nwrite;
}
m_samples_sent += nwritten / sizeof(kernel_sample_t);
if (nwritten < buffer.size())
break;
}
}