banan-os/userspace/programs/DynamicLoader/main.cpp

899 lines
25 KiB
C++

#include "utils.h"
#include <LibELF/Types.h>
#include <LibELF/Values.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>
extern "C"
__attribute__((naked))
void _start()
{
#if defined(__x86_64__)
asm volatile(
"xorq %rbp, %rbp;"
"call _entry;"
"ud2;"
);
#elif defined(__i686__)
asm volatile(
"xorl %ebp, %ebp;"
"pushl %ecx;"
"pushl %edx;"
"pushl %esi;"
"pushl %edi;"
"call _entry;"
"ud2;"
);
#else
#error "unsupported architecture"
#endif
}
__attribute__((naked, noreturn))
static void call_entry_point(int, char**, char**, uintptr_t)
{
#if defined(__x86_64__)
asm volatile(
"andq $-16, %rsp;"
"jmp *%rcx;"
);
#elif defined(__i686__)
asm volatile(
"addl $4, %esp;"
"popl %edi;"
"popl %esi;"
"popl %edx;"
"popl %ecx;"
"andl $-16, %esp;"
"jmp *%ecx;"
);
#else
#error "unsupported architecture"
#endif
}
using namespace LibELF;
static void validate_program_header(const ElfNativeFileHeader& file_header)
{
if (file_header.e_ident[EI_MAG0] != ELFMAG0 ||
file_header.e_ident[EI_MAG1] != ELFMAG1 ||
file_header.e_ident[EI_MAG2] != ELFMAG2 ||
file_header.e_ident[EI_MAG3] != ELFMAG3)
{
print_error_and_exit("ELF has invalid magic in header", 0);
}
if (file_header.e_ident[EI_DATA] != ELFDATA2LSB)
print_error_and_exit("ELF is not little-endian", 0);
if (file_header.e_ident[EI_VERSION] != EV_CURRENT)
print_error_and_exit("ELF has invalid version", 0);
#if defined(__x86_64__)
if (file_header.e_ident[EI_CLASS] != ELFCLASS64)
#elif defined(__i686__)
if (file_header.e_ident[EI_CLASS] != ELFCLASS32)
#else
#error "unsupported architecture"
#endif
print_error_and_exit("ELF not in native format", 0);
if (file_header.e_type != ET_EXEC && file_header.e_type != ET_DYN)
print_error_and_exit("ELF has unsupported file header type", 0);
if (file_header.e_version != EV_CURRENT)
print_error_and_exit("ELF has unsupported version", 0);
}
__attribute__((naked))
static void resolve_symbol_trampoline()
{
#if defined(__x86_64__)
asm volatile(
"pushq %rdi;"
"pushq %rsi;"
"pushq %rdx;"
"pushq %rcx;"
"pushq %r8;"
"pushq %r9;"
"pushq %r10;"
"pushq %r11;"
"movq 64(%rsp), %rdi;"
"movq 72(%rsp), %rsi;"
"call resolve_symbol;"
"popq %r11;"
"popq %r10;"
"popq %r9;"
"popq %r8;"
"popq %rcx;"
"popq %rdx;"
"popq %rsi;"
"popq %rdi;"
"addq $16, %rsp;"
"jmp *%rax;"
);
#elif defined(__i686__)
asm volatile(
"call resolve_symbol;"
"addl $8, %esp;"
"jmp *%eax;"
);
#else
#error "unsupported architecture"
#endif
}
struct LoadedElf
{
ElfNativeFileHeader file_header;
ElfNativeDynamic* dynamics;
uintptr_t base;
uintptr_t hash;
uintptr_t strtab;
uintptr_t symtab;
size_t syment;
uintptr_t rel;
size_t relent;
size_t relsz;
uintptr_t rela;
size_t relaent;
size_t relasz;
uintptr_t jmprel;
size_t pltrel;
size_t pltrelsz;
uintptr_t init;
uintptr_t init_array;
size_t init_arraysz;
bool has_called_init;
bool is_relocated;
char path[PATH_MAX];
};
constexpr uintptr_t SYM_NOT_FOUND = -1;
static uint32_t elf_hash(const char* name)
{
uint32_t h = 0, g;
while (*name)
{
h = (h << 4) + *name++;
if ((g = h & 0xF0000000))
h ^= g >> 24;
h &= ~g;
}
return h;
}
static ElfNativeSymbol* find_symbol(const LoadedElf& elf, const char* name)
{
const uint32_t* hash_table = reinterpret_cast<uint32_t*>(elf.hash);
const uint32_t nbucket = hash_table[0];
for (uint32_t entry = hash_table[2 + (elf_hash(name) % nbucket)]; entry; entry = hash_table[2 + nbucket + entry])
{
auto& symbol = *reinterpret_cast<ElfNativeSymbol*>(elf.symtab + entry * elf.syment);
if (symbol.st_shndx == 0)
continue;
const char* symbol_name = reinterpret_cast<const char*>(elf.strtab + symbol.st_name);
if (strcmp(name, symbol_name))
continue;
return &symbol;
}
return nullptr;
}
static uintptr_t get_symbol_address(const LoadedElf& elf, const char* name)
{
auto* symbol = find_symbol(elf, name);
if (symbol == nullptr)
return SYM_NOT_FOUND;
return elf.base + symbol->st_value;
}
static LoadedElf* get_libc_elf();
static LoadedElf* get_libgcc_elf();
template<typename RelocT> requires BAN::is_same_v<RelocT, ElfNativeRelocation> || BAN::is_same_v<RelocT, ElfNativeRelocationA>
static uintptr_t handle_relocation(const LoadedElf& elf, const RelocT& reloc)
{
uintptr_t symbol_address = 0;
size_t symbol_size = 0;
#if defined(__x86_64__)
const bool is_copy = (ELF64_R_TYPE(reloc.r_info) == R_X86_64_COPY);
if (const uint32_t symbol_index = ELF64_R_SYM(reloc.r_info))
#elif defined(__i686__)
const bool is_copy = (ELF32_R_TYPE(reloc.r_info) == R_386_COPY);
if (const uint32_t symbol_index = ELF32_R_SYM(reloc.r_info))
#else
#error "unsupported architecture"
#endif
{
const auto& symbol = *reinterpret_cast<ElfNativeSymbol*>(elf.symtab + symbol_index * elf.syment);
const char* symbol_name = reinterpret_cast<const char*>(elf.strtab + symbol.st_name);
symbol_size = symbol.st_size;
if (!is_copy && symbol.st_shndx)
symbol_address = elf.base + symbol.st_value;
else
{
// external symbol
symbol_address = SYM_NOT_FOUND;
for (size_t i = 0; symbol_address == SYM_NOT_FOUND; i++)
{
auto& dynamic = elf.dynamics[i];
if (dynamic.d_tag == DT_NULL)
break;
if (dynamic.d_tag != DT_NEEDED)
continue;
const auto& lib_elf = *reinterpret_cast<LoadedElf*>(dynamic.d_un.d_ptr);
symbol_address = get_symbol_address(lib_elf, symbol_name);
}
// libgcc_s.so needs symbols from libc, but we can't link it as toolchain
// has to be built before libc. This hack allows resolving symbols from
// libc even if its not specified as dependency, but is loaded
if (symbol_address == SYM_NOT_FOUND)
if (const auto* libc_elf = get_libc_elf())
symbol_address = get_symbol_address(*libc_elf, symbol_name);
if (symbol_address == SYM_NOT_FOUND)
if (const auto* libgcc_elf = get_libgcc_elf())
symbol_address = get_symbol_address(*libgcc_elf, symbol_name);
if (symbol_address == SYM_NOT_FOUND)
{
if (ELF_ST_BIND(symbol.st_info) != STB_WEAK)
{
print(STDERR_FILENO, elf.path);
print(STDERR_FILENO, ": could not find symbol \"");
print(STDERR_FILENO, symbol_name);
print_error_and_exit("\"", 0);
}
symbol_address = 0;
}
}
}
size_t size = 0;
uintptr_t value = 0;
bool add_addend = false;
#if defined(__x86_64__)
switch (ELF64_R_TYPE(reloc.r_info))
{
case R_X86_64_NONE:
break;
case R_X86_64_64:
size = 8;
value = symbol_address;
add_addend = true;
break;
case R_X86_64_COPY:
if (symbol_address == 0)
print_error_and_exit("copy undefined weak symbol?", 0);
memcpy(
reinterpret_cast<void*>(elf.base + reloc.r_offset),
reinterpret_cast<void*>(symbol_address),
symbol_size
);
break;
case R_X86_64_GLOB_DAT:
size = 8;
value = symbol_address;
break;
case R_X86_64_JUMP_SLOT:
size = 8;
value = symbol_address;
break;
case R_X86_64_RELATIVE:
size = 8;
value = elf.base;
add_addend = true;
break;
default:
print(STDERR_FILENO, "unsupported reloc type ");
print_uint(STDERR_FILENO, ELF64_R_TYPE(reloc.r_info));
print(STDERR_FILENO, " in ");
print(STDERR_FILENO, elf.path);
print_error_and_exit("", 0);
}
#elif defined(__i686__)
switch (ELF32_R_TYPE(reloc.r_info))
{
case R_386_NONE:
break;
case R_386_32:
size = 4;
value = symbol_address;
add_addend = true;
break;
case R_386_PC32:
size = 4;
value = symbol_address - reloc.r_offset;
add_addend = true;
break;
case R_386_COPY:
memcpy(
reinterpret_cast<void*>(elf.base + reloc.r_offset),
reinterpret_cast<void*>(symbol_address),
symbol_size
);
break;
case R_386_GLOB_DAT:
size = 4;
value = symbol_address;
break;
case R_386_JMP_SLOT:
size = 4;
value = symbol_address;
break;
case R_386_RELATIVE:
size = 4;
value = elf.base;
add_addend = true;
break;
default:
print(STDERR_FILENO, "unsupported reloc type ");
print_uint(STDERR_FILENO, ELF32_R_TYPE(reloc.r_info));
print_error_and_exit("", 0);
}
#else
#error "unsupported architecture"
#endif
if (add_addend)
{
if constexpr(BAN::is_same_v<RelocT, ElfNativeRelocationA>)
value += reloc.r_addend;
else
{
switch (size)
{
case 0: break;
case 1: value += *reinterpret_cast<uint8_t*> (elf.base + reloc.r_offset); break;
case 2: value += *reinterpret_cast<uint16_t*>(elf.base + reloc.r_offset); break;
case 4: value += *reinterpret_cast<uint32_t*>(elf.base + reloc.r_offset); break;
case 8: value += *reinterpret_cast<uint64_t*>(elf.base + reloc.r_offset); break;
}
}
}
switch (size)
{
case 0: break;
case 1: *reinterpret_cast<uint8_t*> (elf.base + reloc.r_offset) = value; break;
case 2: *reinterpret_cast<uint16_t*>(elf.base + reloc.r_offset) = value; break;
case 4: *reinterpret_cast<uint32_t*>(elf.base + reloc.r_offset) = value; break;
case 8: *reinterpret_cast<uint64_t*>(elf.base + reloc.r_offset) = value; break;
}
return value;
}
static void relocate_elf(LoadedElf& elf, bool lazy_load)
{
if (elf.is_relocated)
return;
// relocate libraries
for (size_t i = 0;; i++)
{
auto& dynamic = elf.dynamics[i];
if (dynamic.d_tag == DT_NULL)
break;
if (dynamic.d_tag != DT_NEEDED)
continue;
relocate_elf(*reinterpret_cast<LoadedElf*>(dynamic.d_un.d_ptr), lazy_load);
}
if (elf.is_relocated)
return;
// do "normal" relocations
if (elf.rel && elf.relent)
for (size_t i = 0; i < elf.relsz / elf.relent; i++)
handle_relocation(elf, *reinterpret_cast<ElfNativeRelocation*>(elf.rel + i * elf.relent));
if (elf.rela && elf.relaent)
for (size_t i = 0; i < elf.relasz / elf.relaent; i++)
handle_relocation(elf, *reinterpret_cast<ElfNativeRelocationA*>(elf.rela + i * elf.relaent));
// do jumprel relocations
if (elf.jmprel && elf.pltrelsz)
{
if (elf.pltrel != DT_REL && elf.pltrel != DT_RELA)
print_error_and_exit("invalid value for DT_PLTREL", 0);
if (!lazy_load)
{
switch (elf.pltrel)
{
case DT_REL:
for (size_t i = 0; i < elf.pltrelsz / sizeof(ElfNativeRelocation); i++)
handle_relocation(elf, reinterpret_cast<ElfNativeRelocation*>(elf.jmprel)[i]);
break;
case DT_RELA:
for (size_t i = 0; i < elf.pltrelsz / sizeof(ElfNativeRelocationA); i++)
handle_relocation(elf, reinterpret_cast<ElfNativeRelocationA*>(elf.jmprel)[i]);
break;
}
}
else
{
const size_t pltrelent = (elf.pltrel == DT_REL)
? sizeof(ElfNativeRelocation)
: sizeof(ElfNativeRelocationA);
for (size_t i = 0; i < elf.pltrelsz / pltrelent; i++)
{
const auto info = (elf.pltrel == DT_REL)
? reinterpret_cast<ElfNativeRelocation*>(elf.jmprel)[i].r_info
: reinterpret_cast<ElfNativeRelocationA*>(elf.jmprel)[i].r_info;
const auto offset = (elf.pltrel == DT_REL)
? reinterpret_cast<ElfNativeRelocation*>(elf.jmprel)[i].r_offset
: reinterpret_cast<ElfNativeRelocationA*>(elf.jmprel)[i].r_offset;
#if defined(__x86_64__)
if (ELF64_R_TYPE(info) != R_X86_64_JUMP_SLOT)
print_error_and_exit("jmprel relocation not R_X86_64_JUMP_SLOT", 0);
#elif defined(__i686__)
if (ELF32_R_TYPE(info) != R_386_JMP_SLOT)
print_error_and_exit("jmprel relocation not R_386_JMP_SLOT", 0);
#else
#error "unsupported architecture"
#endif
*reinterpret_cast<uintptr_t*>(elf.base + offset) += elf.base;
}
}
}
elf.is_relocated = true;
}
extern "C"
__attribute__((used))
uintptr_t resolve_symbol(const LoadedElf& elf, uintptr_t plt_entry)
{
if (elf.pltrel == DT_REL)
return handle_relocation(elf, *reinterpret_cast<ElfNativeRelocation*>(elf.jmprel + plt_entry));
if (elf.pltrel == DT_RELA)
return handle_relocation(elf, reinterpret_cast<ElfNativeRelocationA*>(elf.jmprel)[plt_entry]);
print_error_and_exit("invalid value for DT_PLTREL", 0);
}
static LoadedElf& load_elf(const char* path, int fd);
static void handle_dynamic(LoadedElf& elf)
{
uintptr_t pltgot = 0;
for (size_t i = 0;; i++)
{
auto& dynamic = elf.dynamics[i];
if (dynamic.d_tag == DT_NULL)
break;
switch (dynamic.d_tag)
{
case DT_PLTGOT: dynamic.d_un.d_ptr += elf.base; break;
case DT_HASH: dynamic.d_un.d_ptr += elf.base; break;
case DT_STRTAB: dynamic.d_un.d_ptr += elf.base; break;
case DT_SYMTAB: dynamic.d_un.d_ptr += elf.base; break;
case DT_RELA: dynamic.d_un.d_ptr += elf.base; break;
case DT_INIT: dynamic.d_un.d_ptr += elf.base; break;
case DT_FINI: dynamic.d_un.d_ptr += elf.base; break;
case DT_REL: dynamic.d_un.d_ptr += elf.base; break;
case DT_JMPREL: dynamic.d_un.d_ptr += elf.base; break;
case DT_INIT_ARRAY: dynamic.d_un.d_ptr += elf.base; break;
case DT_FINI_ARRAY: dynamic.d_un.d_ptr += elf.base; break;
}
switch (dynamic.d_tag)
{
case DT_PLTRELSZ: elf.pltrelsz = dynamic.d_un.d_val; break;
case DT_PLTGOT: pltgot = dynamic.d_un.d_ptr; break;
case DT_HASH: elf.hash = dynamic.d_un.d_ptr; break;
case DT_STRTAB: elf.strtab = dynamic.d_un.d_ptr; break;
case DT_SYMTAB: elf.symtab = dynamic.d_un.d_ptr; break;
case DT_RELA: elf.rela = dynamic.d_un.d_ptr; break;
case DT_RELASZ: elf.relasz = dynamic.d_un.d_val; break;
case DT_RELAENT: elf.relaent = dynamic.d_un.d_val; break;
case DT_SYMENT: elf.syment = dynamic.d_un.d_val; break;
case DT_REL: elf.rel = dynamic.d_un.d_ptr; break;
case DT_RELSZ: elf.relsz = dynamic.d_un.d_val; break;
case DT_RELENT: elf.relent = dynamic.d_un.d_val; break;
case DT_PLTREL: elf.pltrel = dynamic.d_un.d_val; break;
case DT_JMPREL: elf.jmprel = dynamic.d_un.d_ptr; break;
case DT_INIT: elf.init = dynamic.d_un.d_ptr; break;
case DT_INIT_ARRAY: elf.init_array = dynamic.d_un.d_ptr; break;
case DT_INIT_ARRAYSZ: elf.init_arraysz = dynamic.d_un.d_val; break;
}
}
for (size_t i = 0;; i++)
{
auto& dynamic = elf.dynamics[i];
if (dynamic.d_tag == DT_NULL)
break;
if (dynamic.d_tag != DT_NEEDED)
continue;
const char* library_dir = "/usr/lib/";
char path_buffer[PATH_MAX];
char* path_ptr = path_buffer;
const char* library_name = reinterpret_cast<const char*>(elf.strtab + dynamic.d_un.d_val);
if (library_name[0] != '/')
for (size_t i = 0; library_dir[i]; i++)
*path_ptr++ = library_dir[i];
for (size_t i = 0; library_name[i]; i++)
*path_ptr++ = library_name[i];
*path_ptr = '\0';
char realpath[PATH_MAX];
if (auto ret = syscall(SYS_REALPATH, path_buffer, realpath); ret < 0)
print_error_and_exit("realpath", ret);
int library_fd = syscall(SYS_OPENAT, AT_FDCWD, realpath, O_RDONLY);
if (library_fd < 0)
print_error_and_exit("could not open library", library_fd);
const auto& loaded_elf = load_elf(realpath, library_fd);
dynamic.d_un.d_ptr = reinterpret_cast<uintptr_t>(&loaded_elf);
syscall(SYS_CLOSE, library_fd);
}
// setup required GOT entries
reinterpret_cast<uintptr_t*>(pltgot)[0] = reinterpret_cast<uintptr_t>(elf.dynamics);
reinterpret_cast<uintptr_t*>(pltgot)[1] = reinterpret_cast<uintptr_t>(&elf);
reinterpret_cast<uintptr_t*>(pltgot)[2] = reinterpret_cast<uintptr_t>(&resolve_symbol_trampoline);
}
static bool can_load_elf(int fd, const ElfNativeFileHeader& file_header, uintptr_t base)
{
for (size_t i = 0; i < file_header.e_phnum; i++)
{
ElfNativeProgramHeader program_header;
if (auto ret = syscall(SYS_PREAD, fd, &program_header, sizeof(program_header), file_header.e_phoff + i * file_header.e_phentsize); ret != sizeof(program_header))
print_error_and_exit("could not read program header", ret);
program_header.p_vaddr += base;
uintptr_t page_alinged_vaddr = program_header.p_vaddr & ~(uintptr_t)0xFFF;
size_t mmap_length = (program_header.p_vaddr + program_header.p_memsz) - page_alinged_vaddr;
sys_mmap_t mmap_args;
mmap_args.addr = reinterpret_cast<void*>(page_alinged_vaddr);
mmap_args.fildes = -1;
mmap_args.flags = MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE;
mmap_args.len = mmap_length;
mmap_args.off = 0;
mmap_args.prot = PROT_NONE;
auto ret = reinterpret_cast<void*>(syscall(SYS_MMAP, &mmap_args));
if (ret == MAP_FAILED)
return false;
syscall(SYS_MUNMAP, ret, mmap_length);
}
return true;
}
static void load_program_header(const ElfNativeProgramHeader& program_header, int fd, bool needs_writable)
{
if (program_header.p_type != PT_LOAD)
print_error_and_exit("trying to load non PT_LOAD program header", 0);
if (program_header.p_memsz < program_header.p_filesz)
print_error_and_exit("invalid program header, memsz lower than filesz", 0);
const int prot =
[&program_header]() -> int
{
int result = 0;
if (program_header.p_flags & PF_R)
result |= PROT_READ;
if (program_header.p_flags & PF_W)
result |= PROT_WRITE;
if (program_header.p_flags & PF_X)
result |= PROT_EXEC;
return result;
}();
const size_t file_backed_size =
[&program_header]() -> size_t
{
if ((program_header.p_vaddr & 0xFFF) || (program_header.p_offset & 0xFFF))
return 0;
if (program_header.p_filesz == program_header.p_memsz)
return program_header.p_filesz;
return program_header.p_filesz & ~(uintptr_t)0xFFF;
}();
if (file_backed_size)
{
// aligned addresses, use file mmap
sys_mmap_t mmap_args;
mmap_args.addr = reinterpret_cast<void*>(program_header.p_vaddr);
mmap_args.fildes = fd;
mmap_args.flags = MAP_PRIVATE | MAP_FIXED;
mmap_args.len = file_backed_size;
mmap_args.off = program_header.p_offset;
mmap_args.prot = prot | PROT_WRITE;
if (auto ret = syscall(SYS_MMAP, &mmap_args); ret != static_cast<long>(program_header.p_vaddr))
print_error_and_exit("could not load program header", ret);
}
if (file_backed_size < program_header.p_memsz)
{
const uintptr_t aligned_addr = (program_header.p_vaddr + file_backed_size) & ~(uintptr_t)0xFFF;
// unaligned addresses, cannot use file mmap
sys_mmap_t mmap_args;
mmap_args.addr = reinterpret_cast<void*>(aligned_addr);
mmap_args.fildes = -1;
mmap_args.flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED;
mmap_args.len = (program_header.p_vaddr + program_header.p_memsz) - aligned_addr;
mmap_args.off = 0;
mmap_args.prot = prot | PROT_WRITE;
if (auto ret = syscall(SYS_MMAP, &mmap_args); ret != static_cast<long>(aligned_addr))
print_error_and_exit("could not load program header", ret);
if (file_backed_size < program_header.p_filesz)
{
const uintptr_t addr = program_header.p_vaddr + file_backed_size;
const uintptr_t size = program_header.p_filesz - file_backed_size;
const size_t offset = program_header.p_offset + file_backed_size;
if (auto ret = syscall(SYS_PREAD, fd, addr, size, offset); ret != static_cast<long>(size))
print_error_and_exit("could not load program header", ret);
}
memset(
reinterpret_cast<void*>(program_header.p_vaddr + program_header.p_filesz),
0x00,
program_header.p_memsz - program_header.p_filesz
);
}
if (!(prot & PROT_WRITE) && !needs_writable)
{
// FIXME: Implement mprotect so PROT_WRITE can be removed
//syscall(SYS_MPROTECT, start_vaddr, length, prot);
}
}
static LoadedElf s_loaded_files[128];
static size_t s_loaded_file_count = 0;
static LoadedElf* get_libc_elf()
{
for (size_t i = 0; i < s_loaded_file_count; i++)
if (strcmp(s_loaded_files[i].path, "/usr/lib/libc.so") == 0)
return &s_loaded_files[i];
return nullptr;
}
static LoadedElf* get_libgcc_elf()
{
for (size_t i = 0; i < s_loaded_file_count; i++)
if (strcmp(s_loaded_files[i].path, "/usr/lib/libgcc_s.so") == 0)
return &s_loaded_files[i];
return nullptr;
}
static LoadedElf& load_elf(const char* path, int fd)
{
for (size_t i = 0; i < s_loaded_file_count; i++)
if (strcmp(s_loaded_files[i].path, path) == 0)
return s_loaded_files[i];
ElfNativeFileHeader file_header;
if (auto ret = syscall(SYS_READ, fd, &file_header, sizeof(file_header)); ret != sizeof(file_header))
print_error_and_exit("could not read file header", ret);
validate_program_header(file_header);
uintptr_t base = 0;
if (file_header.e_type == ET_DYN)
{
#if defined(__x86_64__)
constexpr uintptr_t base_mask = 0x7FFFFFFFF000;
#elif defined(__i686__)
constexpr uintptr_t base_mask = 0x7FFFF000;
#else
#error "unsupported architecture"
#endif
// FIXME: This is very hacky :D
do {
base = (get_random_uptr() & base_mask) + 0x100000;
} while (!can_load_elf(fd, file_header, base));
}
bool needs_writable = false;
bool has_dynamic_pheader = false;
ElfNativeProgramHeader dynamic_pheader;
for (size_t i = 0; i < file_header.e_phnum; i++)
{
if (auto ret = syscall(SYS_PREAD, fd, &dynamic_pheader, sizeof(dynamic_pheader), file_header.e_phoff + i * file_header.e_phentsize); ret != sizeof(dynamic_pheader))
print_error_and_exit("could not read program header", ret);
if (dynamic_pheader.p_type != PT_DYNAMIC)
continue;
sys_mmap_t mmap_args;
mmap_args.addr = nullptr;
mmap_args.fildes = -1;
mmap_args.flags = MAP_ANONYMOUS | MAP_PRIVATE;
mmap_args.len = dynamic_pheader.p_memsz;
mmap_args.off = 0;
mmap_args.prot = PROT_READ | PROT_WRITE;
const auto uaddr = syscall(SYS_MMAP, &mmap_args);
if (uaddr < 0)
print_error_and_exit("could not map dynamic header", uaddr);
if (auto ret = syscall(SYS_PREAD, fd, uaddr, dynamic_pheader.p_filesz, dynamic_pheader.p_offset); ret != static_cast<long>(dynamic_pheader.p_filesz))
print_error_and_exit("could not read dynamic header", ret);
const auto* dynamics = reinterpret_cast<ElfNativeDynamic*>(uaddr);
for (size_t j = 0;; j++)
{
const auto& dynamic = dynamics[j];
if (dynamic.d_tag == DT_NULL)
break;
if (dynamic.d_tag != DT_TEXTREL)
continue;
needs_writable = true;
break;
}
syscall(SYS_MUNMAP, uaddr, dynamic_pheader.p_memsz);
has_dynamic_pheader = true;
break;
}
for (size_t i = 0; i < file_header.e_phnum; i++)
{
ElfNativeProgramHeader program_header;
if (auto ret = syscall(SYS_PREAD, fd, &program_header, sizeof(program_header), file_header.e_phoff + i * file_header.e_phentsize); ret != sizeof(program_header))
print_error_and_exit("could not read program header", ret);
switch (program_header.p_type)
{
case PT_NULL:
case PT_DYNAMIC:
case PT_INTERP:
case PT_NOTE:
case PT_PHDR:
break;
case PT_LOAD:
program_header.p_vaddr += base;
load_program_header(program_header, fd, needs_writable);
break;
default:
print(STDERR_FILENO, "unsupported program header type ");
print_uint(STDERR_FILENO, program_header.p_type);
print_error_and_exit("", 0);
}
}
auto& elf = s_loaded_files[s_loaded_file_count++];
elf.base = base;
elf.dynamics = nullptr;
memcpy(&elf.file_header, &file_header, sizeof(file_header));
strcpy(elf.path, path);
if (has_dynamic_pheader)
{
sys_mmap_t mmap_args;
mmap_args.addr = nullptr;
mmap_args.fildes = -1;
mmap_args.flags = MAP_ANONYMOUS | MAP_PRIVATE;
mmap_args.len = dynamic_pheader.p_memsz;
mmap_args.off = 0;
mmap_args.prot = PROT_READ | PROT_WRITE;
const auto uaddr = syscall(SYS_MMAP, &mmap_args);
if (uaddr < 0)
print_error_and_exit("could not map dynamic header", uaddr);
if (auto ret = syscall(SYS_PREAD, fd, uaddr, dynamic_pheader.p_filesz, dynamic_pheader.p_offset); ret != static_cast<long>(dynamic_pheader.p_filesz))
print_error_and_exit("could not read dynamic header", ret);
elf.dynamics = reinterpret_cast<ElfNativeDynamic*>(uaddr);
handle_dynamic(elf);
}
return elf;
}
static void call_init_funcs(LoadedElf& elf, char** envp, bool skip)
{
if (elf.has_called_init)
return;
if (elf.dynamics)
{
for (size_t i = 0;; i++)
{
const auto& dynamic = elf.dynamics[i];
if (dynamic.d_tag == DT_NULL)
break;
if (dynamic.d_tag == DT_NEEDED)
call_init_funcs(*reinterpret_cast<LoadedElf*>(dynamic.d_un.d_ptr), envp, false);
}
}
if (elf.has_called_init || skip)
return;
using init_t = void(*)();
if (elf.init)
reinterpret_cast<init_t>(elf.init)();
for (size_t i = 0; i < elf.init_arraysz / sizeof(init_t); i++)
reinterpret_cast<init_t*>(elf.init_array)[i]();
if (strcmp(elf.path, "/usr/lib/libc.so") == 0)
{
const uintptr_t init_libc = get_symbol_address(elf, "_init_libc");
if (init_libc != SYM_NOT_FOUND)
{
using init_libc_t = void(*)(char**);
reinterpret_cast<init_libc_t>(init_libc)(envp);
}
}
elf.has_called_init = true;
}
extern "C"
__attribute__((used, noreturn))
int _entry(int argc, char** argv, char** envp, int fd)
{
const bool invoked_directly = (fd < 0);
if (invoked_directly)
{
if (argc < 2)
print_error_and_exit("missing program name", 0);
argc--;
argv++;
fd = syscall(SYS_OPENAT, AT_FDCWD, argv[0], O_RDONLY);
if (fd < 0)
print_error_and_exit("could not open program", fd);
}
init_random();
auto elf = load_elf(argv[0], fd);
syscall(SYS_CLOSE, fd);
fini_random();
relocate_elf(elf, true);
call_init_funcs(elf, envp, true);
call_entry_point(argc, argv, envp, elf.base + elf.file_header.e_entry);
}