banan-os/kernel/arch/i386/TTY.cpp

379 lines
8.7 KiB
C++

#include <kernel/kmalloc.h>
#include <kernel/panic.h>
#include <kernel/Serial.h>
#include <kernel/TTY.h>
#include <kernel/VESA.h>
#include <string.h>
#define BEL 0x07
#define BS 0x08
#define HT 0x09
#define LF 0x0A
#define FF 0x0C
#define CR 0x0D
#define ESC 0x1B
#define CSI '['
template<typename T> inline constexpr T max(T a, T b) { return a > b ? a : b; }
template<typename T> inline constexpr T min(T a, T b) { return a < b ? a : b; }
template<typename T> inline constexpr T clamp(T x, T a, T b) { return x < a ? a : x > b ? b : x; }
static TTY* s_tty = nullptr;
TTY::TTY()
{
m_width = VESA::GetTerminalWidth();
m_height = VESA::GetTerminalHeight();
m_buffer = new Cell[m_width * m_height];
if (s_tty == nullptr)
s_tty = this;
}
void TTY::Clear()
{
for (uint32_t i = 0; i < m_width * m_height; i++)
m_buffer[i] = { .foreground = m_foreground, .background = m_background, .character = ' ' };
VESA::Clear(m_background);
}
void TTY::SetCursorPosition(uint32_t x, uint32_t y)
{
static uint32_t last_x = -1;
static uint32_t last_y = -1;
if (last_x != uint32_t(-1) && last_y != uint32_t(-1))
RenderFromBuffer(last_x, last_y); // Hacky way to clear previous cursor in graphics mode :D
VESA::SetCursorPosition(x, y, VESA::Color::BRIGHT_WHITE);
last_x = m_column = x;
last_y = m_row = y;
}
static uint16_t handle_unicode(uint8_t ch)
{
static uint8_t unicode_left = 0;
static uint16_t codepoint = 0;
if (unicode_left)
{
if ((ch >> 6) == 0b10)
{
codepoint = (codepoint << 6) | ch;
unicode_left--;
if (unicode_left > 0)
return 0xFFFF;
return codepoint;
}
else
{
// invalid utf-8
unicode_left = 0;
return 0x00;
}
}
else
{
if ((ch >> 3) == 0b11110)
{
unicode_left = 3;
codepoint = ch & 0b00000111;
return 0xFFFF;
}
if ((ch >> 4) == 0b1110)
{
unicode_left = 2;
codepoint = ch & 0b00001111;
return 0xFFFF;
}
if ((ch >> 5) == 0b110)
{
unicode_left = 1;
codepoint = ch & 0b00011111;
return 0xFFFF;
}
}
return ch & 0x7F;
}
void TTY::ResetAnsiEscape()
{
m_ansi_state.mode = '\0';
m_ansi_state.index = 0;
m_ansi_state.nums[0] = -1;
m_ansi_state.nums[1] = -1;
}
void TTY::HandleAnsiSGR()
{
switch (m_ansi_state.nums[0])
{
case -1:
case 0:
m_foreground = VESA::Color::BRIGHT_WHITE;
m_background = VESA::Color::BLACK;
break;
case 30: m_foreground = VESA::Color::BRIGHT_BLACK; break;
case 31: m_foreground = VESA::Color::BRIGHT_RED; break;
case 32: m_foreground = VESA::Color::BRIGHT_GREEN; break;
case 33: m_foreground = VESA::Color::BRIGHT_YELLOW; break;
case 34: m_foreground = VESA::Color::BRIGHT_BLUE; break;
case 35: m_foreground = VESA::Color::BRIGHT_MAGENTA; break;
case 36: m_foreground = VESA::Color::BRIGHT_CYAN; break;
case 37: m_foreground = VESA::Color::BRIGHT_WHITE; break;
case 40: m_background = VESA::Color::BRIGHT_BLACK; break;
case 41: m_background = VESA::Color::BRIGHT_RED; break;
case 42: m_background = VESA::Color::BRIGHT_GREEN; break;
case 43: m_background = VESA::Color::BRIGHT_YELLOW; break;
case 44: m_background = VESA::Color::BRIGHT_BLUE; break;
case 45: m_background = VESA::Color::BRIGHT_MAGENTA; break;
case 46: m_background = VESA::Color::BRIGHT_CYAN; break;
case 47: m_background = VESA::Color::BRIGHT_WHITE; break;
}
}
void TTY::HandleAnsiEscape(uint16_t ch)
{
switch (m_ansi_state.mode)
{
case '\1':
{
if (ch == CSI)
{
m_ansi_state.mode = CSI;
return;
}
return ResetAnsiEscape();
}
case CSI:
{
switch (ch)
{
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
int32_t& val = m_ansi_state.nums[m_ansi_state.index];
val = (val == -1) ? (ch - '0') : (val * 10 + ch - '0');
return;
}
case ';':
m_ansi_state.index++;
return;
case 'A': // Cursor Up
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_row = max<int32_t>(m_row - m_ansi_state.nums[0], 0);
return ResetAnsiEscape();
case 'B': // Curson Down
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_row = min<int32_t>(m_row + m_ansi_state.nums[0], m_height - 1);
return ResetAnsiEscape();
case 'C': // Cursor Forward
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_column = min<int32_t>(m_column + m_ansi_state.nums[0], m_width - 1);
return ResetAnsiEscape();
case 'D': // Cursor Back
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_column = max<int32_t>(m_column - m_ansi_state.nums[0], 0);
return ResetAnsiEscape();
case 'E': // Cursor Next Line
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_row = min<int32_t>(m_row + m_ansi_state.nums[0], m_height - 1);
m_column = 0;
return ResetAnsiEscape();
case 'F': // Cursor Previous Line
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_row = max<int32_t>(m_row - m_ansi_state.nums[0], 0);
m_column = 0;
return ResetAnsiEscape();
case 'G': // Cursor Horizontal Absolute
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
m_column = clamp<int32_t>(m_ansi_state.nums[0] - 1, 0, m_width - 1);
return ResetAnsiEscape();
case 'H': // Cursor Position
if (m_ansi_state.nums[0] == -1)
m_ansi_state.nums[0] = 1;
if (m_ansi_state.nums[1] == -1)
m_ansi_state.nums[1] = 1;
m_row = clamp<int32_t>(m_ansi_state.nums[0] - 1, 0, m_height - 1);
m_column = clamp<int32_t>(m_ansi_state.nums[1] - 1, 0, m_width - 1);
return ResetAnsiEscape();
case 'J': // Erase in Display
dprintln("Unsupported ANSI CSI character J");
return ResetAnsiEscape();
case 'K': // Erase in Line
dprintln("Unsupported ANSI CSI character K");
return ResetAnsiEscape();
case 'S': // Scroll Up
dprintln("Unsupported ANSI CSI character S");
return ResetAnsiEscape();
case 'T': // Scroll Down
dprintln("Unsupported ANSI CSI character T");
return ResetAnsiEscape();
case 'f': // Horizontal Vertical Position
dprintln("Unsupported ANSI CSI character f");
return ResetAnsiEscape();
case 'm':
HandleAnsiSGR();
return ResetAnsiEscape();
default:
dprintln("Unsupported ANSI CSI character {}", ch);
return ResetAnsiEscape();
}
}
default:
dprintln("Unsupported ANSI mode");
return ResetAnsiEscape();
}
}
void TTY::RenderFromBuffer(uint32_t x, uint32_t y)
{
if (x >= m_width || y >= m_height)
Kernel::panic("invalid render from buffer, {} {}", x, y);
const auto& cell = m_buffer[y * m_width + x];
VESA::PutCharAt(cell.character, x, y, cell.foreground, cell.background);
}
void TTY::PutCharAt(uint16_t ch, uint32_t x, uint32_t y)
{
auto& cell = m_buffer[y * m_width + x];
cell.character = ch;
cell.foreground = m_foreground;
cell.background = m_background;
VESA::PutCharAt(ch, x, y, m_foreground, m_background);
}
void TTY::PutChar(char ch)
{
uint16_t cp = handle_unicode(ch);
if (cp == 0xFFFF)
return;
if (m_ansi_state.mode != 0)
return HandleAnsiEscape(cp);
// https://en.wikipedia.org/wiki/ANSI_escape_code
switch (cp)
{
case BEL: // TODO
break;
case BS:
if (m_column > 0)
m_column--;
break;
case HT:
m_column++;
while (m_column % 8)
m_column++;
break;
case LF:
m_column = 0;
m_row++;
break;
case FF:
m_row++;
break;
case CR:
m_column = 0;
break;
case ESC:
m_ansi_state.mode = '\1';
break;
default:
PutCharAt(cp, m_column, m_row);
m_column++;
break;
}
if (m_column >= m_width)
{
m_column = 0;
m_row++;
}
while (m_row >= m_height)
{
memmove(m_buffer, m_buffer + m_width, m_width * (m_height - 1) * sizeof(Cell));
// Clear last line in buffer
for (uint32_t x = 0; x < m_width; x++)
m_buffer[(m_height - 1) * m_width + x] = { .foreground = m_foreground, .background = m_background, .character = ' ' };
// Render the whole buffer to the screen
for (uint32_t y = 0; y < m_height; y++)
for (uint32_t x = 0; x < m_width; x++)
RenderFromBuffer(x, y);
m_column = 0;
m_row--;
}
SetCursorPosition(m_column, m_row);
}
void TTY::Write(const char* data, size_t size)
{
for (size_t i = 0; i < size; i++)
PutChar(data[i]);
}
void TTY::WriteString(const char* data)
{
while (*data)
{
PutChar(*data);
data++;
}
}
void TTY::PutCharCurrent(char ch)
{
if (s_tty)
{
s_tty->PutChar(ch);
}
else
{
static uint32_t x = 0;
static uint32_t y = 0;
switch (ch)
{
case '\n':
x = 0;
y++;
break;
default:
VESA::PutCharAt(ch, x, y, VESA::Color::BRIGHT_WHITE, VESA::Color::BLACK);
x++;
break;
}
if (x == VESA::GetTerminalWidth())
{
x = 0;
y++;
}
if (y == VESA::GetTerminalHeight())
{
x = 0;
y = 0;
VESA::Clear(VESA::Color::BLACK);
}
}
}