banan-os/kernel/kernel/Memory/VirtualRange.cpp

188 lines
5.3 KiB
C++

#include <kernel/Lock/LockGuard.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/VirtualRange.h>
namespace Kernel
{
BAN::ErrorOr<BAN::UniqPtr<VirtualRange>> VirtualRange::create_to_vaddr(PageTable& page_table, vaddr_t vaddr, size_t size, PageTable::flags_t flags, bool preallocate_pages)
{
ASSERT(size % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
ASSERT(vaddr > 0);
VirtualRange* result_ptr = new VirtualRange(page_table, preallocate_pages);
if (result_ptr == nullptr)
return BAN::Error::from_errno(ENOMEM);
auto result = BAN::UniqPtr<VirtualRange>::adopt(result_ptr);
result->m_vaddr = vaddr;
result->m_size = size;
result->m_flags = flags;
ASSERT(page_table.reserve_range(vaddr, size));
if (!preallocate_pages)
return result;
size_t needed_pages = size / PAGE_SIZE;
for (size_t i = 0; i < needed_pages; i++)
{
paddr_t paddr = Heap::get().take_free_page();
if (paddr == 0)
{
for (size_t j = 0; j < i; j++)
Heap::get().release_page(page_table.physical_address_of(vaddr + j * PAGE_SIZE));
page_table.unmap_range(vaddr, size);
result->m_vaddr = 0;
return BAN::Error::from_errno(ENOMEM);
}
page_table.map_page_at(paddr, vaddr + i * PAGE_SIZE, flags);
}
result->set_zero();
return result;
}
BAN::ErrorOr<BAN::UniqPtr<VirtualRange>> VirtualRange::create_to_vaddr_range(PageTable& page_table, vaddr_t vaddr_start, vaddr_t vaddr_end, size_t size, PageTable::flags_t flags, bool preallocate_pages)
{
ASSERT(size % PAGE_SIZE == 0);
ASSERT(vaddr_start > 0);
ASSERT(vaddr_start + size <= vaddr_end);
// Align vaddr range to page boundaries
if (size_t rem = vaddr_start % PAGE_SIZE)
vaddr_start += PAGE_SIZE - rem;
if (size_t rem = vaddr_end % PAGE_SIZE)
vaddr_end -= rem;
ASSERT(vaddr_start < vaddr_end);
ASSERT(vaddr_end - vaddr_start + 1 >= size / PAGE_SIZE);
vaddr_t vaddr = page_table.reserve_free_contiguous_pages(size / PAGE_SIZE, vaddr_start, vaddr_end);
if (vaddr == 0)
{
dprintln("no free {} byte area", size);
return BAN::Error::from_errno(ENOMEM);
}
ASSERT(vaddr + size <= vaddr_end);
SpinLockGuard _(page_table);
page_table.unmap_range(vaddr, size); // We have to unmap here to allow reservation in create_to_vaddr()
return create_to_vaddr(page_table, vaddr, size, flags, preallocate_pages);
}
VirtualRange::VirtualRange(PageTable& page_table, bool preallocated)
: m_page_table(page_table)
, m_preallocated(preallocated)
{ }
VirtualRange::~VirtualRange()
{
if (m_vaddr == 0)
return;
for (size_t offset = 0; offset < size(); offset += PAGE_SIZE)
{
paddr_t paddr = m_page_table.physical_address_of(vaddr() + offset);
if (paddr)
Heap::get().release_page(paddr);
}
m_page_table.unmap_range(vaddr(), size());
}
BAN::ErrorOr<BAN::UniqPtr<VirtualRange>> VirtualRange::clone(PageTable& page_table)
{
ASSERT(&PageTable::current() == &m_page_table);
ASSERT(&m_page_table != &page_table);
auto result = TRY(create_to_vaddr(page_table, vaddr(), size(), flags(), m_preallocated));
SpinLockGuard _(m_page_table);
for (size_t offset = 0; offset < size(); offset += PAGE_SIZE)
{
if (!m_preallocated && m_page_table.physical_address_of(vaddr() + offset))
{
paddr_t paddr = Heap::get().take_free_page();
if (paddr == 0)
return BAN::Error::from_errno(ENOMEM);
result->m_page_table.map_page_at(paddr, vaddr() + offset, m_flags);
}
PageTable::with_fast_page(result->m_page_table.physical_address_of(vaddr() + offset), [&] {
memcpy(PageTable::fast_page_as_ptr(), (void*)(vaddr() + offset), PAGE_SIZE);
});
}
return result;
}
BAN::ErrorOr<void> VirtualRange::allocate_page_for_demand_paging(vaddr_t address)
{
ASSERT(!m_preallocated);
ASSERT(contains(address));
ASSERT(&PageTable::current() == &m_page_table);
vaddr_t vaddr = address & PAGE_ADDR_MASK;
ASSERT(m_page_table.physical_address_of(vaddr) == 0);
paddr_t paddr = Heap::get().take_free_page();
if (paddr == 0)
return BAN::Error::from_errno(ENOMEM);
m_page_table.map_page_at(paddr, vaddr, m_flags);
memset((void*)vaddr, 0x00, PAGE_SIZE);
return {};
}
void VirtualRange::set_zero()
{
if (&PageTable::current() == &m_page_table || &PageTable::kernel() == &m_page_table)
{
memset((void*)vaddr(), 0, size());
return;
}
for (size_t offset = 0; offset < size(); offset += PAGE_SIZE)
{
PageTable::with_fast_page(m_page_table.physical_address_of(vaddr() + offset), [&] {
memset(PageTable::fast_page_as_ptr(), 0x00, PAGE_SIZE);
});
}
}
void VirtualRange::copy_from(size_t offset, const uint8_t* buffer, size_t bytes)
{
if (bytes == 0)
return;
// Verify no overflow
ASSERT(bytes <= size());
ASSERT(offset <= size());
ASSERT(offset <= size() - bytes);
if (&PageTable::current() == &m_page_table || &PageTable::kernel() == &m_page_table)
{
memcpy((void*)(vaddr() + offset), buffer, bytes);
return;
}
size_t page_offset = offset % PAGE_SIZE;
size_t page_index = offset / PAGE_SIZE;
while (bytes > 0)
{
PageTable::with_fast_page(m_page_table.physical_address_of(vaddr() + page_index * PAGE_SIZE), [&] {
memcpy(PageTable::fast_page_as_ptr(page_offset), buffer, PAGE_SIZE - page_offset);
});
buffer += PAGE_SIZE - page_offset;
bytes -= PAGE_SIZE - page_offset;
page_offset = 0;
page_index++;
}
}
}