banan-os/userspace/libraries/LibC/pthread.cpp

1221 lines
27 KiB
C++

#include <BAN/Assert.h>
#include <BAN/Atomic.h>
#include <BAN/Debug.h>
#include <BAN/PlacementNew.h>
#include <kernel/Arch.h>
#include <kernel/Thread.h>
#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>
struct pthread_trampoline_info_t
{
struct uthread* uthread;
void* (*start_routine)(void*);
void* arg;
};
static constexpr unsigned rwlock_writer_locked = -1;
// stack is 16 byte aligned on entry, this `call` is used to align it
extern "C" void _pthread_trampoline(void*);
asm(
#if ARCH(x86_64)
"_pthread_trampoline:"
"popq %rdi;"
"andq $-16, %rsp;"
"xorq %rbp, %rbp;"
"call _pthread_trampoline_cpp"
#elif ARCH(i686)
"_pthread_trampoline:"
"ud2;"
"popl %edi;"
"andl $-16, %esp;"
"xorl %ebp, %ebp;"
"subl $12, %esp;"
"pushl %edi;"
"call _pthread_trampoline_cpp"
#endif
);
extern "C" void _pthread_trampoline_cpp(void* arg)
{
auto info = *reinterpret_cast<pthread_trampoline_info_t*>(arg);
info.uthread->id = syscall(SYS_PTHREAD_SELF);
syscall(SYS_SET_TLS, info.uthread);
free(arg);
pthread_exit(info.start_routine(info.arg));
ASSERT_NOT_REACHED();
}
uthread* _get_uthread()
{
uthread* result;
#if ARCH(x86_64)
asm volatile("movq %%fs:0, %0" : "=r"(result));
#elif ARCH(i686)
asm volatile("movl %%gs:0, %0" : "=r"(result));
#endif
return result;
}
static void free_uthread(uthread* uthread)
{
if (uthread->dtv[0] == 0)
return free(uthread);
uint8_t* tls_addr = reinterpret_cast<uint8_t*>(uthread) - uthread->master_tls_size;
const size_t tls_size = uthread->master_tls_size
+ sizeof(struct uthread)
+ (uthread->dtv[0] + 1) * sizeof(uintptr_t);
munmap(tls_addr, tls_size);
}
void pthread_cleanup_pop(int execute)
{
uthread* uthread = _get_uthread();
ASSERT(uthread->cleanup_stack);
auto* cleanup = uthread->cleanup_stack;
uthread->cleanup_stack = cleanup->next;
if (execute)
cleanup->routine(cleanup->arg);
free(cleanup);
}
void pthread_cleanup_push(void (*routine)(void*), void* arg)
{
auto* cleanup = static_cast<_pthread_cleanup_t*>(malloc(sizeof(_pthread_cleanup_t)));
ASSERT(cleanup);
uthread* uthread = _get_uthread();
cleanup->routine = routine;
cleanup->arg = arg;
cleanup->next = uthread->cleanup_stack;
uthread->cleanup_stack = cleanup;
}
#if not __disable_thread_local_storage
static thread_local struct {
void* value;
void (*destructor)(void*);
} s_pthread_keys[PTHREAD_KEYS_MAX] {};
static thread_local uint8_t s_pthread_keys_allocated[(PTHREAD_KEYS_MAX + 7) / 8];
static inline bool is_pthread_key_allocated(pthread_key_t key)
{
if (key >= PTHREAD_KEYS_MAX)
return false;
return s_pthread_keys_allocated[key / 8] & (1 << (key % 8));
}
int pthread_key_create(pthread_key_t* key, void (*destructor)(void*))
{
for (pthread_key_t i = 0; i < PTHREAD_KEYS_MAX; i++)
{
if (is_pthread_key_allocated(i))
continue;
s_pthread_keys[i].value = nullptr;
s_pthread_keys[i].destructor = destructor;
s_pthread_keys_allocated[i / 8] |= 1 << (i % 8);
*key = i;
return 0;
}
return EAGAIN;
}
int pthread_key_delete(pthread_key_t key)
{
if (!is_pthread_key_allocated(key))
return EINVAL;
s_pthread_keys[key].value = nullptr;
s_pthread_keys[key].destructor = nullptr;
s_pthread_keys_allocated[key / 8] &= ~(1 << (key % 8));
return 0;
}
void* pthread_getspecific(pthread_key_t key)
{
if (!is_pthread_key_allocated(key))
return nullptr;
return s_pthread_keys[key].value;
}
int pthread_setspecific(pthread_key_t key, const void* value)
{
if (!is_pthread_key_allocated(key))
return EINVAL;
s_pthread_keys[key].value = const_cast<void*>(value);
return 0;
}
#endif
int pthread_attr_destroy(pthread_attr_t* attr)
{
(void)attr;
return 0;
}
int pthread_attr_init(pthread_attr_t* attr)
{
*attr = {
.inheritsched = PTHREAD_INHERIT_SCHED,
.schedparam = {},
.schedpolicy = SCHED_RR,
.detachstate = PTHREAD_CREATE_JOINABLE,
.scope = PTHREAD_SCOPE_SYSTEM,
.stacksize = Kernel::Thread::userspace_stack_size,
.guardsize = static_cast<size_t>(getpagesize()),
};
return 0;
}
int pthread_attr_getdetachstate(const pthread_attr_t* attr, int* detachstate)
{
*detachstate = attr->detachstate;
return 0;
}
int pthread_attr_setdetachstate(pthread_attr_t* attr, int detachstate)
{
switch (detachstate)
{
case PTHREAD_CREATE_DETACHED:
dwarnln("TODO: pthread_attr_setdetachstate");
return ENOTSUP;
case PTHREAD_CREATE_JOINABLE:
attr->detachstate = detachstate;
return 0;
}
return EINVAL;
}
int pthread_attr_getguardsize(const pthread_attr_t* __restrict attr, size_t* __restrict guardsize)
{
*guardsize = attr->guardsize;
return 0;
}
int pthread_attr_setguardsize(pthread_attr_t* attr, size_t guardsize)
{
attr->guardsize = guardsize;
return 0;
}
int pthread_attr_getinheritsched(const pthread_attr_t* __restrict attr, int* __restrict inheritsched)
{
*inheritsched = attr->inheritsched;
return 0;
}
int pthread_attr_setinheritsched(pthread_attr_t* attr, int inheritsched)
{
switch (inheritsched)
{
case PTHREAD_INHERIT_SCHED:
case PTHREAD_EXPLICIT_SCHED:
attr->inheritsched = inheritsched;
return 0;
}
return EINVAL;
}
int pthread_attr_getschedparam(const pthread_attr_t* __restrict attr, struct sched_param* __restrict param)
{
*param = attr->schedparam;
return 0;
}
int pthread_attr_setschedparam(pthread_attr_t* __restrict attr, const struct sched_param* __restrict param)
{
attr->schedparam = *param;
return 0;
}
int pthread_attr_getschedpolicy(const pthread_attr_t* __restrict attr, int* __restrict policy)
{
*policy = attr->schedpolicy;
return 0;
}
int pthread_attr_setschedpolicy(pthread_attr_t* attr, int policy)
{
switch (policy)
{
case SCHED_FIFO:
case SCHED_SPORADIC:
case SCHED_OTHER:
return ENOTSUP;
case SCHED_RR:
attr->schedpolicy = policy;
return 0;
}
return EINVAL;
}
int pthread_attr_getscope(const pthread_attr_t* __restrict attr, int* __restrict contentionscope)
{
*contentionscope = attr->scope;
return 0;
}
int pthread_attr_setscope(pthread_attr_t* attr, int contentionscope)
{
switch (contentionscope)
{
case PTHREAD_SCOPE_PROCESS:
return ENOTSUP;
case PTHREAD_SCOPE_SYSTEM:
attr->scope = contentionscope;
return 0;
}
return EINVAL;
}
int pthread_attr_getstack(const pthread_attr_t* __restrict attr, void** __restrict stackaddr, size_t* __restrict stacksize)
{
(void)attr;
(void)stackaddr;
(void)stacksize;
dwarnln("TODO: pthread_attr_getstack");
return ENOTSUP;
}
int pthread_attr_setstack(pthread_attr_t* attr, void* stackaddr, size_t stacksize)
{
(void)attr;
(void)stackaddr;
(void)stacksize;
dwarnln("TODO: pthread_attr_setstack");
return ENOTSUP;
}
int pthread_attr_getstacksize(const pthread_attr_t* __restrict attr, size_t* __restrict stacksize)
{
*stacksize = attr->stacksize;
return 0;
}
int pthread_attr_setstacksize(pthread_attr_t* attr, size_t stacksize)
{
attr->stacksize = stacksize;
return 0;
}
int pthread_create(pthread_t* __restrict thread_id, const pthread_attr_t* __restrict attr, void* (*start_routine)(void*), void* __restrict arg)
{
auto* info = static_cast<pthread_trampoline_info_t*>(malloc(sizeof(pthread_trampoline_info_t)));
if (info == nullptr)
return errno;
*info = {
.uthread = nullptr,
.start_routine = start_routine,
.arg = arg,
};
long syscall_ret = 0;
if (uthread* self = _get_uthread(); self->master_tls_addr == nullptr)
{
uthread* uthread = static_cast<struct uthread*>(malloc(sizeof(struct uthread) + sizeof(uintptr_t)));
if (uthread == nullptr)
goto pthread_create_error;
*uthread = {
.self = uthread,
.master_tls_addr = nullptr,
.master_tls_size = 0,
.cleanup_stack = nullptr,
.id = -1,
.errno_ = 0,
.cancel_type = PTHREAD_CANCEL_DEFERRED,
.cancel_state = PTHREAD_CANCEL_ENABLE,
.canceled = false,
};
uthread->dtv[0] = 0;
info->uthread = uthread;
}
else
{
const size_t module_count = self->dtv[0];
const size_t tls_size = self->master_tls_size
+ sizeof(uthread)
+ (module_count + 1) * sizeof(uintptr_t);
uint8_t* tls_addr = static_cast<uint8_t*>(mmap(nullptr, tls_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0));
if (tls_addr == MAP_FAILED)
goto pthread_create_error;
memcpy(tls_addr, self->master_tls_addr, self->master_tls_size);
uthread* uthread = reinterpret_cast<struct uthread*>(tls_addr + self->master_tls_size);
*uthread = {
.self = uthread,
.master_tls_addr = self->master_tls_addr,
.master_tls_size = self->master_tls_size,
.cleanup_stack = nullptr,
.id = -1,
.errno_ = 0,
.cancel_type = PTHREAD_CANCEL_DEFERRED,
.cancel_state = PTHREAD_CANCEL_ENABLE,
.canceled = 0,
};
const uintptr_t self_addr = reinterpret_cast<uintptr_t>(self);
const uintptr_t uthread_addr = reinterpret_cast<uintptr_t>(uthread);
uthread->dtv[0] = module_count;
for (size_t i = 1; i <= module_count; i++)
uthread->dtv[i] = self->dtv[i] - self_addr + uthread_addr;
info->uthread = uthread;
}
syscall_ret = syscall(SYS_PTHREAD_CREATE, attr, _pthread_trampoline, info);
if (syscall_ret == -1)
goto pthread_create_error;
if (thread_id)
*thread_id = syscall_ret;
return 0;
pthread_create_error:
const int return_code = errno;
if (info->uthread)
free_uthread(info->uthread);
free(info);
return return_code;
}
int pthread_detach(pthread_t thread)
{
(void)thread;
dwarnln("TODO: pthread_detach");
return ENOTSUP;
}
void pthread_exit(void* value_ptr)
{
uthread* uthread = _get_uthread();
while (uthread->cleanup_stack)
pthread_cleanup_pop(1);
#if not __disable_thread_local_storage
for (size_t iteration = 0; iteration < PTHREAD_DESTRUCTOR_ITERATIONS; iteration++)
{
bool called = false;
for (pthread_key_t i = 0; i < PTHREAD_KEYS_MAX; i++)
{
if (!is_pthread_key_allocated(i))
continue;
if (!s_pthread_keys[i].value || !s_pthread_keys[i].destructor)
continue;
void* old_value = s_pthread_keys[i].value;
s_pthread_keys[i].value = nullptr;
s_pthread_keys[i].destructor(old_value);
called = true;
}
if (!called)
break;
}
#endif
free_uthread(uthread);
syscall(SYS_PTHREAD_EXIT, value_ptr);
ASSERT_NOT_REACHED();
}
int pthread_equal(pthread_t t1, pthread_t t2)
{
return t1 == t2;
}
int pthread_join(pthread_t thread, void** value_ptr)
{
pthread_testcancel();
return syscall(SYS_PTHREAD_JOIN, thread, value_ptr);
}
pthread_t pthread_self(void)
{
return _get_uthread()->id;
}
int pthread_once(pthread_once_t* once_control, void (*init_routine)(void))
{
static_assert(PTHREAD_ONCE_INIT == 0);
pthread_once_t expected = 0;
if (BAN::atomic_compare_exchange(*once_control, expected, 1))
{
init_routine();
BAN::atomic_store(*once_control, 2);
}
while (BAN::atomic_load(*once_control) != 2)
sched_yield();
return 0;
}
struct pthread_atfork_t
{
void (*function)();
pthread_atfork_t* next;
};
static pthread_atfork_t* s_atfork_prepare = nullptr;
static pthread_atfork_t* s_atfork_parent = nullptr;
static pthread_atfork_t* s_atfork_child = nullptr;
static pthread_mutex_t s_atfork_mutex = PTHREAD_MUTEX_INITIALIZER;
void _pthread_call_atfork(int state)
{
pthread_mutex_lock(&s_atfork_mutex);
pthread_atfork_t* list = nullptr;
switch (state)
{
case _PTHREAD_ATFORK_PREPARE: list = s_atfork_prepare; break;
case _PTHREAD_ATFORK_PARENT: list = s_atfork_parent; break;
case _PTHREAD_ATFORK_CHILD: list = s_atfork_child; break;
default:
ASSERT_NOT_REACHED();
}
for (; list; list = list->next)
list->function();
pthread_mutex_unlock(&s_atfork_mutex);
}
int pthread_atfork(void (*prepare)(void), void (*parent)(void), void(*child)(void))
{
pthread_atfork_t* prepare_entry = nullptr;
if (prepare != nullptr)
prepare_entry = static_cast<pthread_atfork_t*>(malloc(sizeof(pthread_attr_t)));
pthread_atfork_t* parent_entry = nullptr;
if (parent != nullptr)
parent_entry = static_cast<pthread_atfork_t*>(malloc(sizeof(pthread_attr_t)));
pthread_atfork_t* child_entry = nullptr;
if (child != nullptr)
child_entry = static_cast<pthread_atfork_t*>(malloc(sizeof(pthread_attr_t)));
if ((prepare && !prepare_entry) || (parent && !parent_entry) || (child && !child_entry))
{
if (prepare_entry)
free(prepare_entry);
if (parent_entry)
free(parent_entry);
if (child_entry)
free(child_entry);
return ENOMEM;
}
const auto prepend_atfork =
[](pthread_atfork_t*& list, pthread_atfork_t* entry)
{
entry->next = list;
list = entry;
};
const auto append_atfork =
[](pthread_atfork_t*& list, pthread_atfork_t* entry)
{
while (list)
list = list->next;
entry->next = nullptr;
list = entry;
};
pthread_mutex_lock(&s_atfork_mutex);
if (prepare_entry)
{
prepare_entry->function = prepare;
prepend_atfork(s_atfork_prepare, prepare_entry);
}
if (parent_entry)
{
parent_entry->function = parent;
append_atfork(s_atfork_parent, parent_entry);
}
if (child_entry)
{
child_entry->function = parent;
append_atfork(s_atfork_child, child_entry);
}
pthread_mutex_unlock(&s_atfork_mutex);
return 0;
}
static void pthread_cancel_handler(int)
{
uthread* uthread = _get_uthread();
BAN::atomic_store(uthread->canceled, true);
if (BAN::atomic_load(uthread->cancel_state) != PTHREAD_CANCEL_ENABLE)
return;
switch (BAN::atomic_load(uthread->cancel_type))
{
case PTHREAD_CANCEL_ASYNCHRONOUS:
pthread_exit(PTHREAD_CANCELED);
case PTHREAD_CANCEL_DEFERRED:
return;
}
ASSERT_NOT_REACHED();
}
int pthread_cancel(pthread_t thread)
{
signal(SIGCANCEL, &pthread_cancel_handler);
return pthread_kill(thread, SIGCANCEL);
}
int pthread_setcancelstate(int state, int* oldstate)
{
switch (state)
{
case PTHREAD_CANCEL_ENABLE:
case PTHREAD_CANCEL_DISABLE:
break;
default:
return EINVAL;
}
BAN::atomic_exchange(_get_uthread()->cancel_state, state);
if (oldstate)
*oldstate = state;
return 0;
}
int pthread_setcanceltype(int type, int* oldtype)
{
switch (type)
{
case PTHREAD_CANCEL_DEFERRED:
case PTHREAD_CANCEL_ASYNCHRONOUS:
break;
default:
return EINVAL;
}
BAN::atomic_exchange(_get_uthread()->cancel_type, type);
if (oldtype)
*oldtype = type;
return 0;
}
void pthread_testcancel(void)
{
uthread* uthread = _get_uthread();
if (BAN::atomic_load(uthread->cancel_state) != PTHREAD_CANCEL_ENABLE)
return;
if (!BAN::atomic_load(uthread->canceled))
return;
pthread_exit(PTHREAD_CANCELED);
}
int pthread_spin_destroy(pthread_spinlock_t* lock)
{
(void)lock;
return 0;
}
int pthread_spin_init(pthread_spinlock_t* lock, int pshared)
{
(void)pshared;
*lock = 0;
return 0;
}
int pthread_spin_lock(pthread_spinlock_t* lock)
{
const auto tid = pthread_self();
ASSERT(BAN::atomic_load(*lock, BAN::MemoryOrder::memory_order_relaxed) != tid);
pthread_t expected = 0;
while (!BAN::atomic_compare_exchange(*lock, expected, tid, BAN::MemoryOrder::memory_order_acquire))
expected = 0;
return 0;
}
int pthread_spin_trylock(pthread_spinlock_t* lock)
{
const auto tid = pthread_self();
ASSERT(BAN::atomic_load(*lock, BAN::MemoryOrder::memory_order_relaxed) != tid);
pthread_t expected = 0;
if (!BAN::atomic_compare_exchange(*lock, expected, tid, BAN::MemoryOrder::memory_order_acquire))
return EBUSY;
return 0;
}
int pthread_spin_unlock(pthread_spinlock_t* lock)
{
ASSERT(BAN::atomic_load(*lock, BAN::MemoryOrder::memory_order_relaxed) == pthread_self());
BAN::atomic_store(*lock, 0, BAN::MemoryOrder::memory_order_release);
return 0;
}
template<typename T>
static int _pthread_timedlock(T* __restrict lock, const struct timespec* __restrict abstime, int (*trylock)(T*))
{
if (trylock(lock) == 0)
return 0;
constexpr auto has_timed_out =
[](const struct timespec* abstime) -> bool
{
struct timespec curtime;
clock_gettime(CLOCK_REALTIME, &curtime);
if (curtime.tv_sec < abstime->tv_sec)
return false;
if (curtime.tv_sec > abstime->tv_sec)
return true;
return curtime.tv_nsec >= abstime->tv_nsec;
};
while (!has_timed_out(abstime))
{
if (trylock(lock) == 0)
return 0;
sched_yield();
}
return ETIMEDOUT;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t* attr)
{
(void)attr;
return 0;
}
int pthread_mutexattr_init(pthread_mutexattr_t* attr)
{
*attr = {
.type = PTHREAD_MUTEX_DEFAULT,
.shared = false,
};
return 0;
}
int pthread_mutexattr_getpshared(const pthread_mutexattr_t* __restrict attr, int* __restrict pshared)
{
*pshared = attr->shared ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_mutexattr_setpshared(pthread_mutexattr_t* attr, int pshared)
{
switch (pshared)
{
case PTHREAD_PROCESS_PRIVATE:
attr->shared = false;
return 0;
case PTHREAD_PROCESS_SHARED:
attr->shared = true;
return 0;
}
return EINVAL;
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t* __restrict attr, int* __restrict type)
{
*type = attr->type;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t* attr, int type)
{
switch (type)
{
case PTHREAD_MUTEX_DEFAULT:
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_RECURSIVE:
attr->type = type;
return 0;
}
return EINVAL;
}
int pthread_mutex_destroy(pthread_mutex_t* mutex)
{
(void)mutex;
return 0;
}
int pthread_mutex_init(pthread_mutex_t* __restrict mutex, const pthread_mutexattr_t* __restrict attr)
{
const pthread_mutexattr_t default_attr = {
.type = PTHREAD_MUTEX_DEFAULT,
.shared = false,
};
if (attr == nullptr)
attr = &default_attr;
*mutex = {
.attr = *attr,
.locker = 0,
.lock_depth = 0,
};
return 0;
}
int pthread_mutex_lock(pthread_mutex_t* mutex)
{
// NOTE: current yielding implementation supports shared
const auto tid = pthread_self();
switch (mutex->attr.type)
{
case PTHREAD_MUTEX_RECURSIVE:
if (mutex->locker != tid)
break;
mutex->lock_depth++;
return 0;
case PTHREAD_MUTEX_ERRORCHECK:
if (mutex->locker != tid)
break;
return EDEADLK;
}
pthread_t expected = 0;
while (!BAN::atomic_compare_exchange(mutex->locker, expected, tid, BAN::MemoryOrder::memory_order_acquire))
{
sched_yield();
expected = 0;
}
mutex->lock_depth = 1;
return 0;
}
int pthread_mutex_trylock(pthread_mutex_t* mutex)
{
// NOTE: current yielding implementation supports shared
const auto tid = pthread_self();
switch (mutex->attr.type)
{
case PTHREAD_MUTEX_RECURSIVE:
if (mutex->locker != tid)
break;
mutex->lock_depth++;
return 0;
case PTHREAD_MUTEX_ERRORCHECK:
if (mutex->locker != tid)
break;
return EDEADLK;
}
pthread_t expected = 0;
if (!BAN::atomic_compare_exchange(mutex->locker, expected, tid, BAN::MemoryOrder::memory_order_acquire))
return EBUSY;
mutex->lock_depth = 1;
return 0;
}
int pthread_mutex_timedlock(pthread_mutex_t* __restrict mutex, const struct timespec* __restrict abstime)
{
return _pthread_timedlock(mutex, abstime, &pthread_mutex_trylock);
}
int pthread_mutex_unlock(pthread_mutex_t* mutex)
{
// NOTE: current yielding implementation supports shared
ASSERT(mutex->locker == pthread_self());
mutex->lock_depth--;
if (mutex->lock_depth == 0)
BAN::atomic_store(mutex->locker, 0, BAN::MemoryOrder::memory_order_release);
return 0;
}
int pthread_rwlockattr_destroy(pthread_rwlockattr_t* attr)
{
(void)attr;
return 0;
}
int pthread_rwlockattr_init(pthread_rwlockattr_t* attr)
{
*attr = {
.shared = false,
};
return 0;
}
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t* __restrict attr, int* __restrict pshared)
{
*pshared = attr->shared ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t* attr, int pshared)
{
switch (pshared)
{
case PTHREAD_PROCESS_PRIVATE:
attr->shared = false;
return 0;
case PTHREAD_PROCESS_SHARED:
attr->shared = true;
return 0;
}
return EINVAL;
}
int pthread_rwlock_destroy(pthread_rwlock_t* rwlock)
{
(void)rwlock;
return 0;
}
int pthread_rwlock_init(pthread_rwlock_t* __restrict rwlock, const pthread_rwlockattr_t* __restrict attr)
{
const pthread_rwlockattr_t default_attr = {
.shared = false,
};
if (attr == nullptr)
attr = &default_attr;
*rwlock = {
.attr = *attr,
.lockers = 0,
.writers = 0,
};
return 0;
}
int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock)
{
unsigned expected = BAN::atomic_load(rwlock->lockers);
for (;;)
{
if (expected == rwlock_writer_locked || BAN::atomic_load(rwlock->writers))
sched_yield();
else if (BAN::atomic_compare_exchange(rwlock->lockers, expected, expected + 1))
break;
}
return 0;
}
int pthread_rwlock_tryrdlock(pthread_rwlock_t* rwlock)
{
unsigned expected = BAN::atomic_load(rwlock->lockers);
while (expected != rwlock_writer_locked && BAN::atomic_load(rwlock->writers) == 0)
if (BAN::atomic_compare_exchange(rwlock->lockers, expected, expected + 1))
return 0;
return EBUSY;
}
int pthread_rwlock_timedrdlock(pthread_rwlock_t* __restrict rwlock, const struct timespec* __restrict abstime)
{
return _pthread_timedlock(rwlock, abstime, &pthread_rwlock_tryrdlock);
}
int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock)
{
BAN::atomic_add_fetch(rwlock->writers, 1);
unsigned expected = 0;
while (!BAN::atomic_compare_exchange(rwlock->lockers, expected, rwlock_writer_locked))
{
sched_yield();
expected = 0;
}
BAN::atomic_sub_fetch(rwlock->writers, 1);
return 0;
}
int pthread_rwlock_trywrlock(pthread_rwlock_t* rwlock)
{
unsigned expected = 0;
if (!BAN::atomic_compare_exchange(rwlock->lockers, expected, rwlock_writer_locked))
return EBUSY;
return 0;
}
int pthread_rwlock_timedwrlock(pthread_rwlock_t* __restrict rwlock, const struct timespec* __restrict abstime)
{
return _pthread_timedlock(rwlock, abstime, &pthread_rwlock_trywrlock);
}
int pthread_rwlock_unlock(pthread_rwlock_t* rwlock)
{
if (BAN::atomic_load(rwlock->lockers) == rwlock_writer_locked)
BAN::atomic_store(rwlock->lockers, 0);
else
BAN::atomic_sub_fetch(rwlock->lockers, 1);
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t* attr)
{
(void)attr;
return 0;
}
int pthread_condattr_init(pthread_condattr_t* attr)
{
*attr = {
.clock = CLOCK_REALTIME,
.shared = false,
};
return 0;
}
int pthread_condattr_getclock(const pthread_condattr_t* __restrict attr, clockid_t* __restrict clock_id)
{
*clock_id = attr->clock;
return 0;
}
int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock_id)
{
switch (clock_id)
{
case CLOCK_MONOTONIC:
case CLOCK_REALTIME:
break;
default:
return EINVAL;
}
attr->clock = clock_id;
return 0;
}
int pthread_condattr_getpshared(const pthread_condattr_t* __restrict attr, int* __restrict pshared)
{
*pshared = attr->shared ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_condattr_setpshared(pthread_condattr_t* attr, int pshared)
{
switch (pshared)
{
case PTHREAD_PROCESS_PRIVATE:
attr->shared = false;
return 0;
case PTHREAD_PROCESS_SHARED:
attr->shared = true;
return 0;
}
return EINVAL;
}
int pthread_cond_destroy(pthread_cond_t* cond)
{
(void)cond;
return 0;
}
int pthread_cond_init(pthread_cond_t* __restrict cond, const pthread_condattr_t* __restrict attr)
{
const pthread_condattr_t default_attr = {
.clock = CLOCK_MONOTONIC,
.shared = false,
};
if (attr == nullptr)
attr = &default_attr;
*cond = {
.attr = *attr,
.lock = PTHREAD_SPIN_INITIALIZER,
.block_list = nullptr,
};
return 0;
}
int pthread_cond_broadcast(pthread_cond_t* cond)
{
pthread_spin_lock(&cond->lock);
for (auto* block = cond->block_list; block; block = block->next)
BAN::atomic_store(block->signaled, 1);
pthread_spin_unlock(&cond->lock);
return 0;
}
int pthread_cond_signal(pthread_cond_t* cond)
{
pthread_spin_lock(&cond->lock);
if (cond->block_list)
BAN::atomic_store(cond->block_list->signaled, 1);
pthread_spin_unlock(&cond->lock);
return 0;
}
int pthread_cond_wait(pthread_cond_t* __restrict cond, pthread_mutex_t* __restrict mutex)
{
// pthread_testcancel in pthread_cond_timedwait
return pthread_cond_timedwait(cond, mutex, nullptr);
}
int pthread_cond_timedwait(pthread_cond_t* __restrict cond, pthread_mutex_t* __restrict mutex, const struct timespec* __restrict abstime)
{
pthread_testcancel();
constexpr auto has_timed_out =
[](const struct timespec* abstime, clockid_t clock_id) -> bool
{
if (abstime == nullptr)
return false;
struct timespec curtime;
clock_gettime(clock_id, &curtime);
if (curtime.tv_sec < abstime->tv_sec)
return false;
if (curtime.tv_sec > abstime->tv_sec)
return true;
return curtime.tv_nsec >= abstime->tv_nsec;
};
pthread_spin_lock(&cond->lock);
_pthread_cond_block block = {
.next = cond->block_list,
.signaled = 0,
};
cond->block_list = &block;
pthread_spin_unlock(&cond->lock);
pthread_mutex_unlock(mutex);
while (BAN::atomic_load(block.signaled) == 0)
{
if (has_timed_out(abstime, cond->attr.clock))
return ETIMEDOUT;
sched_yield();
}
pthread_spin_lock(&cond->lock);
if (&block == cond->block_list)
cond->block_list = block.next;
else
{
_pthread_cond_block* prev = cond->block_list;
while (prev->next != &block)
prev = prev->next;
prev->next = block.next;
}
pthread_spin_unlock(&cond->lock);
pthread_mutex_lock(mutex);
return 0;
}
int pthread_barrierattr_destroy(pthread_barrierattr_t* attr)
{
(void)attr;
return 0;
}
int pthread_barrierattr_init(pthread_barrierattr_t* attr)
{
*attr = {
.shared = false,
};
return 0;
}
int pthread_barrierattr_getpshared(const pthread_barrierattr_t* __restrict attr, int* __restrict pshared)
{
*pshared = attr->shared ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_barrierattr_setpshared(pthread_barrierattr_t* attr, int pshared)
{
switch (pshared)
{
case PTHREAD_PROCESS_PRIVATE:
attr->shared = false;
return 0;
case PTHREAD_PROCESS_SHARED:
attr->shared = true;
return 0;
}
return EINVAL;
}
int pthread_barrier_destroy(pthread_barrier_t* barrier)
{
(void)barrier;
return 0;
}
int pthread_barrier_init(pthread_barrier_t* __restrict barrier, const pthread_barrierattr_t* __restrict attr, unsigned count)
{
if (count == 0)
return EINVAL;
const pthread_barrierattr_t default_attr = {
.shared = false,
};
if (attr == nullptr)
attr = &default_attr;
*barrier = {
.attr = *attr,
.target = count,
.waiting = 0,
};
return 0;
}
int pthread_barrier_wait(pthread_barrier_t* barrier)
{
const unsigned index = BAN::atomic_add_fetch(barrier->waiting, 1);
// FIXME: this case should be handled, but should be relatively uncommon
// so i'll just roll with the easy implementation
ASSERT(index <= barrier->target);
if (index == barrier->target)
{
BAN::atomic_store(barrier->waiting, 0);
return PTHREAD_BARRIER_SERIAL_THREAD;
}
while (BAN::atomic_load(barrier->waiting))
sched_yield();
return 0;
}
#if not __disable_thread_local_storage
struct tls_index
{
unsigned long int ti_module;
unsigned long int ti_offset;
};
extern "C" void* __tls_get_addr(tls_index* ti)
{
return reinterpret_cast<void*>(_get_uthread()->dtv[ti->ti_module] + ti->ti_offset);
}
#if ARCH(i686)
extern "C" void* __attribute__((__regparm__(1))) ___tls_get_addr(tls_index* ti)
{
return reinterpret_cast<void*>(get_uthread()->dtv[ti->ti_module] + ti->ti_offset);
}
#endif
#endif