banan-os/kernel/kernel/Storage/DiskCache.cpp

248 lines
6.2 KiB
C++

#include <kernel/LockGuard.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/PageTableScope.h>
#include <kernel/Storage/DiskCache.h>
#include <kernel/Storage/StorageDevice.h>
namespace Kernel
{
DiskCache::DiskCache(StorageDevice& device)
: m_device(device)
{ }
DiskCache::~DiskCache()
{
if (m_device.sector_size() == 0)
return;
release_all_pages();
}
BAN::ErrorOr<void> DiskCache::read_sector(uint64_t sector, uint8_t* buffer)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
for (auto& cache_block : m_cache)
{
for (size_t i = 0; i < cache_block.sectors.size(); i++)
{
if (cache_block.sectors[i].sector != sector)
continue;
cache_block.read_sector(m_device, i, buffer);
return {};
}
}
// Sector was not cached so we must read it from disk
TRY(m_device.read_sectors_impl(sector, 1, buffer));
// We try to add the sector to exisiting cache block
if (!m_cache.empty())
{
auto& cache_block = m_cache.back();
for (size_t i = 0; i < m_cache.back().sectors.size(); i++)
{
if (cache_block.sectors[i].sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].sector = sector;
cache_block.sectors[i].dirty = false;
return {};
}
}
// We try to allocate new cache block for this sector
if (!m_cache.emplace_back().is_error())
{
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
cache_block.paddr = paddr;
cache_block.write_sector(m_device, 0, buffer);
cache_block.sectors[0].sector = sector;
cache_block.sectors[0].dirty = false;
return {};
}
m_cache.pop_back();
}
// We could not cache the sector
return {};
}
BAN::ErrorOr<void> DiskCache::write_sector(uint64_t sector, const uint8_t* buffer)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
// Try to find this sector in the cache
for (auto& cache_block : m_cache)
{
for (size_t i = 0; i < cache_block.sectors.size(); i++)
{
if (cache_block.sectors[i].sector != sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].dirty = true;
return {};
}
}
// Sector was not in the cache, we try to add it to exisiting cache block
if (!m_cache.empty())
{
auto& cache_block = m_cache.back();
for (size_t i = 0; i < m_cache.back().sectors.size(); i++)
{
if (cache_block.sectors[i].sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].sector = sector;
cache_block.sectors[i].dirty = true;
return {};
}
}
// We try to allocate new cache block
if (!m_cache.emplace_back().is_error())
{
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
cache_block.paddr = paddr;
cache_block.write_sector(m_device, 0, buffer);
cache_block.sectors[0].sector = sector;
cache_block.sectors[0].dirty = true;
return {};
}
m_cache.pop_back();
}
// We could not allocate cache, so we must sync it to disk
// right away
TRY(m_device.write_sectors_impl(sector, 1, buffer));
return {};
}
size_t DiskCache::release_clean_pages(size_t page_count)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
size_t released = 0;
for (size_t i = 0; i < m_cache.size() && released < page_count;)
{
bool dirty = false;
for (size_t j = 0; j < sizeof(m_cache[i].sectors) / sizeof(SectorCache); j++)
if (m_cache[i].sectors[j].dirty)
dirty = true;
if (dirty)
{
i++;
continue;
}
Heap::get().release_page(m_cache[i].paddr);
m_cache.remove(i);
released++;
}
(void)m_cache.shrink_to_fit();
return released;
}
size_t DiskCache::release_pages(size_t page_count)
{
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
size_t released = release_clean_pages(page_count);
if (released >= page_count)
return page_count;
// NOTE: There might not actually be page_count pages after this
// function returns. The synchronization must be done elsewhere.
LockGuard _(m_lock);
while (!m_cache.empty() && released < page_count)
{
m_cache.back().sync(m_device);
Heap::get().release_page(m_cache.back().paddr);
m_cache.pop_back();
released++;
}
(void)m_cache.shrink_to_fit();
return released;
}
void DiskCache::release_all_pages()
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
uint8_t* temp_buffer = (uint8_t*)kmalloc(m_device.sector_size());
ASSERT(temp_buffer);
for (auto& cache_block : m_cache)
{
cache_block.sync(m_device);
Heap::get().release_page(cache_block.paddr);
}
m_cache.clear();
}
void DiskCache::CacheBlock::sync(StorageDevice& device)
{
uint8_t* temp_buffer = (uint8_t*)kmalloc(device.sector_size());
ASSERT(temp_buffer);
for (size_t i = 0; i < sectors.size(); i++)
{
if (!sectors[i].dirty)
continue;
read_sector(device, i, temp_buffer);
MUST(device.write_sectors_impl(sectors[i].sector, 1, temp_buffer));
sectors[i].dirty = false;
}
kfree(temp_buffer);
}
void DiskCache::CacheBlock::read_sector(StorageDevice& device, size_t index, uint8_t* buffer)
{
ASSERT(index < sectors.size());
PageTableScope _(PageTable::current());
ASSERT(PageTable::current().is_page_free(0));
PageTable::current().map_page_at(paddr, 0, PageTable::Flags::Present);
memcpy(buffer, (void*)(index * device.sector_size()), device.sector_size());
PageTable::current().unmap_page(0);
PageTable::current().invalidate(0);
}
void DiskCache::CacheBlock::write_sector(StorageDevice& device, size_t index, const uint8_t* buffer)
{
ASSERT(index < sectors.size());
PageTableScope _(PageTable::current());
ASSERT(PageTable::current().is_page_free(0));
PageTable::current().map_page_at(paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
memcpy((void*)(index * device.sector_size()), buffer, device.sector_size());
PageTable::current().unmap_page(0);
PageTable::current().invalidate(0);
}
}