Compare commits

..

No commits in common. "a2b5e71654a29e8660a17144189934416d4935e1" and "211cad03ff1f2fa4a66950bec5b8bd28550f848b" have entirely different histories.

30 changed files with 169 additions and 1115 deletions

View File

@ -13,8 +13,6 @@ namespace BAN
{
public:
Optional();
Optional(Optional&&);
Optional(const Optional&);
Optional(const T&);
Optional(T&&);
template<typename... Args>
@ -22,8 +20,8 @@ namespace BAN
~Optional();
Optional& operator=(Optional&&);
Optional& operator=(const Optional&);
Optional& operator=(Optional&&);
template<typename... Args>
Optional& emplace(Args&&...);
@ -36,9 +34,9 @@ namespace BAN
bool has_value() const;
T release_value();
T& value();
T&& release_value();
const T& value() const;
T& value();
void clear();
@ -52,22 +50,6 @@ namespace BAN
: m_has_value(false)
{}
template<typename T>
Optional<T>::Optional(Optional<T>&& other)
: m_has_value(other.has_value())
{
if (other.has_value())
new (m_storage) T(move(other.release_value()));
}
template<typename T>
Optional<T>::Optional(const Optional<T>& other)
: m_has_value(other.has_value())
{
if (other.has_value())
new (m_storage) T(other.value());
}
template<typename T>
Optional<T>::Optional(const T& value)
: m_has_value(true)
@ -79,7 +61,7 @@ namespace BAN
Optional<T>::Optional(T&& value)
: m_has_value(true)
{
new (m_storage) T(move(value));
new (m_storage) T(BAN::move(value));
}
template<typename T>
@ -87,7 +69,7 @@ namespace BAN
Optional<T>::Optional(Args&&... args)
: m_has_value(true)
{
new (m_storage) T(forward<Args>(args)...);
new (m_storage) T(BAN::forward<Args>(args)...);
}
template<typename T>
@ -97,22 +79,26 @@ namespace BAN
}
template<typename T>
Optional<T>& Optional<T>::operator=(Optional&& other)
Optional<T>& Optional<T>::operator=(const Optional& other)
{
clear();
m_has_value = other.has_value();
if (other.has_value())
new (m_storage) T(move(other.release_value()));
{
m_has_value = true;
new (m_storage) T(other.value());
}
return *this;
}
template<typename T>
Optional<T>& Optional<T>::operator=(const Optional& other)
Optional<T>& Optional<T>::operator=(Optional&& other)
{
clear();
m_has_value = other.has_value();
if (other.has_value)
new (m_storage) T(other.value());
if (other.has_value())
{
m_has_value = true;
new (m_storage) T(BAN::move(other.release_value()));
}
return *this;
}
@ -122,7 +108,7 @@ namespace BAN
{
clear();
m_has_value = true;
new (m_storage) T(forward<Args>(args)...);
new (m_storage) T(BAN::forward<Args>(args)...);
return *this;
}
@ -161,20 +147,11 @@ namespace BAN
}
template<typename T>
T Optional<T>::release_value()
T&& Optional<T>::release_value()
{
ASSERT(has_value());
T released_value = move(value());
value().~T();
m_has_value = false;
return move(released_value);
}
template<typename T>
T& Optional<T>::value()
{
ASSERT(has_value());
return (T&)m_storage;
return BAN::move((T&)m_storage);
}
template<typename T>
@ -184,6 +161,13 @@ namespace BAN
return (const T&)m_storage;
}
template<typename T>
T& Optional<T>::value()
{
ASSERT(has_value());
return (T&)m_storage;
}
template<typename T>
void Optional<T>::clear()
{

View File

@ -53,8 +53,6 @@ set(KERNEL_SOURCES
kernel/Semaphore.cpp
kernel/SpinLock.cpp
kernel/SSP.cpp
kernel/Storage/ATA/AHCI/Controller.cpp
kernel/Storage/ATA/AHCI/Device.cpp
kernel/Storage/ATA/ATABus.cpp
kernel/Storage/ATA/ATAController.cpp
kernel/Storage/ATA/ATADevice.cpp

View File

@ -35,8 +35,6 @@ namespace Kernel
static void initialize(bool force_pic);
static InterruptController& get();
bool is_using_apic() const { return m_using_apic; }
void enter_acpi_mode();
private:

View File

@ -8,16 +8,13 @@ namespace Kernel
class DMARegion
{
public:
static BAN::ErrorOr<BAN::UniqPtr<DMARegion>> create(size_t size);
BAN::ErrorOr<BAN::UniqPtr<DMARegion>> create(size_t size);
~DMARegion();
size_t size() const { return m_size; }
vaddr_t vaddr() const { return m_vaddr; }
paddr_t paddr() const { return m_paddr; }
paddr_t vaddr_to_paddr(vaddr_t vaddr) const { return vaddr - m_vaddr + m_paddr; }
vaddr_t paddr_to_vaddr(paddr_t paddr) const { return paddr - m_paddr + m_vaddr; }
private:
DMARegion(size_t size, vaddr_t vaddr, paddr_t paddr);

View File

@ -75,8 +75,6 @@ namespace Kernel::PCI
uint8_t header_type() const { return m_header_type; }
BAN::ErrorOr<uint8_t> get_irq();
BAN::ErrorOr<BAN::UniqPtr<BarRegion>> allocate_bar_region(uint8_t bar_num);
void enable_bus_mastering();
@ -94,22 +92,16 @@ namespace Kernel::PCI
private:
void enumerate_capabilites();
void set_command_bits(uint16_t mask);
void unset_command_bits(uint16_t mask);
private:
const uint8_t m_bus;
const uint8_t m_dev;
const uint8_t m_func;
uint8_t m_bus;
uint8_t m_dev;
uint8_t m_func;
uint8_t m_class_code;
uint8_t m_subclass;
uint8_t m_prog_if;
uint8_t m_header_type;
BAN::Optional<uint8_t> m_offset_msi;
BAN::Optional<uint8_t> m_offset_msi_x;
};
class PCIManager

View File

@ -1,43 +0,0 @@
#pragma once
#include <BAN/Array.h>
#include <BAN/RefPtr.h>
#include <kernel/InterruptController.h>
#include <kernel/Memory/DMARegion.h>
#include <kernel/PCI.h>
#include <kernel/Storage/ATA/AHCI/Definitions.h>
namespace Kernel
{
class AHCIController final : public StorageController, public Interruptable
{
BAN_NON_COPYABLE(AHCIController);
BAN_NON_MOVABLE(AHCIController);
public:
~AHCIController();
virtual void handle_irq() override;
uint32_t command_slot_count() const { return m_command_slot_count; }
private:
AHCIController(PCI::Device& pci_device)
: m_pci_device(pci_device)
{ }
BAN::ErrorOr<void> initialize();
BAN::Optional<AHCIPortType> check_port_type(volatile HBAPortMemorySpace&);
private:
PCI::Device& m_pci_device;
BAN::UniqPtr<PCI::BarRegion> m_abar;
BAN::Array<AHCIDevice*, 32> m_devices;
uint32_t m_command_slot_count { 0 };
friend class ATAController;
};
}

View File

@ -1,294 +0,0 @@
#pragma once
#include <stdint.h>
#define FIS_TYPE_REGISTER_H2D 0x27
#define FIS_TYPE_REGISTER_D2H 0x34
#define FIS_TYPE_DMA_ACT 0x39
#define FIS_TYPE_DMA_SETUP 0x41
#define FIS_TYPE_DATA 0x46
#define FIS_TYPE_BIST 0x58
#define FIS_TYPE_PIO_SETUP 0x5F
#define FIS_TYPE_SET_DEVIVE_BITS 0xA1
#define SATA_CAP_SUPPORTS64 (1 << 31)
#define SATA_GHC_AHCI_ENABLE (1 << 31)
#define SATA_GHC_INTERRUPT_ENABLE (1 << 1)
#define SATA_SIG_ATA 0x00000101
#define SATA_SIG_ATAPI 0xEB140101
#define SATA_SIG_SEMB 0xC33C0101
#define SATA_SIG_PM 0x96690101
#define HBA_PORT_IPM_ACTIVE 1
#define HBA_PORT_DET_PRESENT 3
#define HBA_PxCMD_ST 0x0001
#define HBA_PxCMD_FRE 0x0010
#define HBA_PxCMD_FR 0x4000
#define HBA_PxCMD_CR 0x8000
namespace Kernel
{
static constexpr uint32_t s_hba_prdt_count { 8 };
struct FISRegisterH2D
{
uint8_t fis_type; // FIS_TYPE_REGISTER_H2D
uint8_t pm_port : 4; // Port multiplier
uint8_t __reserved0 : 3;
uint8_t c : 1; // 1: Command, 0: Control
uint8_t command;
uint8_t feature_lo; // Feature register, 7:0
uint8_t lba0; // LBA low register, 7:0
uint8_t lba1; // LBA mid register, 15:8
uint8_t lba2; // LBA high register, 23:16
uint8_t device;
uint8_t lba3; // LBA register, 31:24
uint8_t lba4; // LBA register, 39:32
uint8_t lba5; // LBA register, 47:40
uint8_t feature_hi; // Feature register, 15:8
uint8_t count_lo; // Count register, 7:0
uint8_t count_hi; // Count register, 15:8
uint8_t icc; // Isochronous command completion
uint8_t control;
uint8_t __reserved1[4];
} __attribute__((packed));
struct FISRegisterD2H
{
uint8_t fis_type; // FIS_TYPE_REGISTER_D2H
uint8_t pm_port : 4; // Port multiplier
uint8_t __reserved0 : 2;
uint8_t i : 1; // Interrupt bit
uint8_t __reserved1 : 1;
uint8_t status;
uint8_t error;
uint8_t lba0; // LBA low register, 7:0
uint8_t lba1; // LBA mid register, 15:8
uint8_t lba2; // LBA high register, 23:16
uint8_t device;
uint8_t lba3; // LBA register, 31:24
uint8_t lba4; // LBA register, 39:32
uint8_t lba5; // LBA register, 47:40
uint8_t __reserved2;
uint8_t count_lo; // Count register, 7:0
uint8_t count_hi; // Count register, 15:8
uint8_t __reserved3[2];
uint8_t __reserved4[4];
} __attribute__((packed));
struct FISDataBI
{
uint8_t fis_type; // FIS_TYPE_DATA
uint8_t pm_port : 4; // Port multiplier
uint8_t __reserved0 : 4;
uint8_t __reserved1[2];
uint32_t data[0]; // Payload (1 - 2048 dwords)
} __attribute__((packed));
struct SetDeviceBitsD2H
{
uint8_t fis_type; // FIS_TYPE_SET_DEVICE_BITS
uint8_t pm_port : 4; // Port multiplier
uint8_t __reserved0 : 2;
uint8_t i : 1; // Interrupt bit
uint8_t n : 1; // Notification bit
uint8_t status;
uint8_t error;
uint32_t __reserved1;
} __attribute__((packed));
struct PIOSetupD2H
{
uint8_t fis_type; // FIS_TYPE_PIO_SETUP
uint8_t pm_port : 4; // Port multiplier
uint8_t __reserved0 : 1;
uint8_t d : 1; // Data transfer direction, 1 - device to host
uint8_t i : 1; // Interrupt bit
uint8_t __reserved1 : 1;
uint8_t status;
uint8_t error;
uint8_t lba0; // LBA low register, 7:0
uint8_t lba1; // LBA mid register, 15:8
uint8_t lba2; // LBA high register, 23:16
uint8_t device;
uint8_t lba3; // LBA register, 31:24
uint8_t lba4; // LBA register, 39:32
uint8_t lba5; // LBA register, 47:40
uint8_t __reserved2;
uint8_t count_lo; // Count register, 7:0
uint8_t count_hi; // Count register, 15:8
uint8_t __reserved3;
uint8_t e_status; // New value of status register
uint16_t tc; // Transfer count
uint8_t __reserved4[2];
} __attribute__((packed));
struct DMASetupBI
{
uint8_t fis_type; // FIS_TYPE_DMA_SETUP
uint8_t pm_port : 4; // Port multiplier
uint8_t __reserved0 : 1;
uint8_t d : 1; // Data transfer direction, 1 - device to host
uint8_t i : 1; // Interrupt bit
uint8_t a : 1; // Auto-activate. Specifies if DMA Activate FIS is needed
uint8_t __reserved1[2];
uint64_t dma_buffer_id; // DMA Buffer Identifier. Used to Identify DMA buffer in host memory.
// SATA Spec says host specific and not in Spec. Trying AHCI spec might work.
uint32_t __reserved2;
uint32_t dma_buffer_offset; // Byte offset into buffer. First 2 bits must be 0
uint32_t dma_transfer_count; // Number of bytes to transfer. Bit 0 must be 0
uint32_t __reserved3;
} __attribute__((packed));
struct HBAPortMemorySpace
{
uint32_t clb; // command list base address, 1K-byte aligned
uint32_t clbu; // command list base address upper 32 bits
uint32_t fb; // FIS base address, 256-byte aligned
uint32_t fbu; // FIS base address upper 32 bits
uint32_t is; // interrupt status
uint32_t ie; // interrupt enable
uint32_t cmd; // command and status
uint32_t __reserved0;
uint32_t tfd; // task file data
uint32_t sig; // signature
uint32_t ssts; // SATA status (SCR0:SStatus)
uint32_t sctl; // SATA control (SCR2:SControl)
uint32_t serr; // SATA error (SCR1:SError)
uint32_t sact; // SATA active (SCR3:SActive)
uint32_t ci; // command issue
uint32_t sntf; // SATA notification (SCR4:SNotification)
uint32_t fbs; // FIS-based switch control
uint32_t __reserved1[11];
uint32_t vendor[4];
} __attribute__((packed));
struct HBAGeneralMemorySpace
{
uint32_t cap; // Host capability
uint32_t ghc; // Global host control
uint32_t is; // Interrupt status
uint32_t pi; // Port implemented
uint32_t vs; // Version
uint32_t ccc_ctl; // Command completion coalescing control
uint32_t ccc_pts; // Command completion coalescing ports
uint32_t em_loc; // 0x1C, Enclosure management location
uint32_t em_ctl; // 0x20, Enclosure management control
uint32_t cap2; // 0x24, Host capabilities extended
uint32_t bohc; // 0x28, BIOS/OS handoff control and status
uint8_t __reserved0[0xA0-0x2C];
uint8_t vendor[0x100-0xA0];
HBAPortMemorySpace ports[0]; // 1 - 32 ports
} __attribute__((packed));
struct ReceivedFIS
{
DMASetupBI dsfis;
uint8_t pad0[4];
PIOSetupD2H psfis;
uint8_t pad1[12];
FISRegisterD2H rfis;
uint8_t pad2[4];
SetDeviceBitsD2H sdbfis;
uint8_t ufis[64];
uint8_t __reserved[0x100-0xA0];
} __attribute__((packed));
struct HBACommandHeader
{
uint8_t cfl : 5; // Command FIS length in DWORDS, 2 ~ 16
uint8_t a : 1; // ATAPI
uint8_t w : 1; // Write, 1: H2D, 0: D2H
uint8_t p : 1; // Prefetchable
uint8_t r : 1; // Reset
uint8_t b : 1; // BIST
uint8_t c : 1; // Clear busy upon R_OK
uint8_t __reserved0 : 1;
uint8_t pmp : 4; // Port multiplier port
uint16_t prdtl; // Physical region descriptor table length in entries
volatile uint32_t prdbc; // Physical region descriptor byte count transferred
uint32_t ctba; // Command table descriptor base address
uint32_t ctbau; // Command table descriptor base address upper 32 bits
uint32_t __reserved1[4];
} __attribute__((packed));
struct HBAPRDTEntry
{
uint32_t dba; // Data base address
uint32_t dbau; // Data base address upper 32 bits
uint32_t __reserved0;
uint32_t dbc : 22; // Byte count, 4M max
uint32_t __reserved1 : 9;
uint32_t i : 1; // Interrupt on completion
} __attribute__((packed));
struct HBACommandTable
{
uint8_t cfis[64];
uint8_t acmd[16];
uint8_t __reserved[48];
HBAPRDTEntry prdt_entry[s_hba_prdt_count];
} __attribute__((packed));
enum class AHCIPortType
{
NONE,
SATA,
SATAPI,
SEMB,
PM
};
class AHCIController;
class AHCIDevice;
}

View File

@ -1,49 +0,0 @@
#pragma once
#include <kernel/Semaphore.h>
#include <kernel/Storage/ATA/AHCI/Definitions.h>
#include <kernel/Storage/ATA/ATADevice.h>
namespace Kernel
{
class AHCIDevice final : public detail::ATABaseDevice
{
public:
static BAN::ErrorOr<BAN::RefPtr<AHCIDevice>> create(BAN::RefPtr<AHCIController>, volatile HBAPortMemorySpace*);
~AHCIDevice() = default;
private:
AHCIDevice(BAN::RefPtr<AHCIController> controller, volatile HBAPortMemorySpace* port)
: m_controller(controller)
, m_port(port)
{ }
BAN::ErrorOr<void> initialize();
BAN::ErrorOr<void> allocate_buffers();
BAN::ErrorOr<void> rebase();
BAN::ErrorOr<void> read_identify_data();
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t lba, uint64_t sector_count, uint8_t* buffer) override;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t lba, uint64_t sector_count, const uint8_t* buffer) override;
BAN::ErrorOr<void> send_command_and_block(uint64_t lba, uint64_t sector_count, Command command);
BAN::Optional<uint32_t> find_free_command_slot();
void handle_irq();
void block_until_irq();
private:
BAN::RefPtr<AHCIController> m_controller;
volatile HBAPortMemorySpace* const m_port;
BAN::UniqPtr<DMARegion> m_dma_region;
// Intermediate read/write buffer
// TODO: can we read straight to user buffer?
BAN::UniqPtr<DMARegion> m_data_dma_region;
volatile bool m_has_got_irq { false };
friend class AHCIController;
};
}

View File

@ -27,6 +27,8 @@ namespace Kernel
virtual void handle_irq() override;
void initialize_devfs();
private:
ATABus(uint16_t base, uint16_t ctrl)
: m_base(base)
@ -52,7 +54,7 @@ namespace Kernel
const uint16_t m_ctrl;
SpinLock m_lock;
volatile bool m_has_got_irq { false };
bool m_has_got_irq { false };
// Non-owning pointers
BAN::Vector<ATADevice*> m_devices;

View File

@ -12,7 +12,7 @@ namespace Kernel
class ATAController : public StorageController
{
public:
static BAN::ErrorOr<BAN::RefPtr<StorageController>> create(PCI::Device&);
static BAN::ErrorOr<BAN::UniqPtr<StorageController>> create(PCI::Device&);
virtual BAN::ErrorOr<void> initialize() override;
private:

View File

@ -33,11 +33,7 @@
#define ATA_STATUS_BSY 0x80
#define ATA_COMMAND_READ_SECTORS 0x20
#define ATA_COMMAND_READ_DMA 0xC8
#define ATA_COMMAND_READ_DMA_EXT 0x25
#define ATA_COMMAND_WRITE_SECTORS 0x30
#define ATA_COMMAND_WRITE_DMA 0xCA
#define ATA_COMMAND_WRITE_DMA_EXT 0x35
#define ATA_COMMAND_IDENTIFY_PACKET 0xA1
#define ATA_COMMAND_CACHE_FLUSH 0xE7
#define ATA_COMMAND_IDENTIFY 0xEC

View File

@ -6,69 +6,52 @@
namespace Kernel
{
namespace detail
{
class ATABaseDevice : public StorageDevice
{
public:
enum class Command
{
Read,
Write
};
public:
virtual ~ATABaseDevice() {};
virtual uint32_t sector_size() const override { return m_sector_words * 2; }
virtual uint64_t total_size() const override { return m_lba_count * sector_size(); }
uint32_t words_per_sector() const { return m_sector_words; }
uint64_t sector_count() const { return m_lba_count; }
BAN::StringView model() const { return m_model; }
BAN::StringView name() const;
virtual dev_t rdev() const override { return m_rdev; }
virtual BAN::ErrorOr<size_t> read_impl(off_t, void*, size_t) override;
virtual BAN::ErrorOr<size_t> write_impl(off_t, const void*, size_t) override;
protected:
ATABaseDevice();
BAN::ErrorOr<void> initialize(BAN::Span<const uint16_t> identify_data);
protected:
uint16_t m_signature;
uint16_t m_capabilities;
uint32_t m_command_set;
uint32_t m_sector_words;
uint64_t m_lba_count;
char m_model[41];
const dev_t m_rdev;
};
}
class ATADevice final : public detail::ATABaseDevice
class ATADevice final : public StorageDevice
{
public:
static BAN::ErrorOr<BAN::RefPtr<ATADevice>> create(BAN::RefPtr<ATABus>, ATABus::DeviceType, bool is_secondary, BAN::Span<const uint16_t> identify_data);
virtual uint32_t sector_size() const override { return m_sector_words * 2; }
virtual uint64_t total_size() const override { return m_lba_count * sector_size(); }
bool is_secondary() const { return m_is_secondary; }
uint32_t words_per_sector() const { return m_sector_words; }
uint64_t sector_count() const { return m_lba_count; }
BAN::StringView model() const { return m_model; }
BAN::StringView name() const;
protected:
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t, uint8_t, uint8_t*) override;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t, uint8_t, const uint8_t*) override;
private:
ATADevice(BAN::RefPtr<ATABus>, ATABus::DeviceType, bool is_secodary);
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t, uint64_t, uint8_t*) override;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t, uint64_t, const uint8_t*) override;
BAN::ErrorOr<void> initialize(BAN::Span<const uint16_t> identify_data);
private:
BAN::RefPtr<ATABus> m_bus;
const ATABus::DeviceType m_type;
const bool m_is_secondary;
uint16_t m_signature;
uint16_t m_capabilities;
uint32_t m_command_set;
uint32_t m_sector_words;
uint64_t m_lba_count;
char m_model[41];
public:
virtual Mode mode() const override { return { Mode::IFBLK | Mode::IRUSR | Mode::IRGRP }; }
virtual uid_t uid() const override { return 0; }
virtual gid_t gid() const override { return 0; }
virtual dev_t rdev() const override { return m_rdev; }
private:
virtual BAN::ErrorOr<size_t> read_impl(off_t, void*, size_t) override;
public:
const dev_t m_rdev;
};
}

View File

@ -1,11 +1,9 @@
#pragma once
#include <BAN/RefPtr.h>
namespace Kernel
{
class StorageController : public BAN::RefCounted<StorageController>
class StorageController
{
public:
virtual ~StorageController() {}

View File

@ -73,8 +73,8 @@ namespace Kernel
BAN::ErrorOr<void> initialize_partitions();
BAN::ErrorOr<void> read_sectors(uint64_t lba, uint64_t sector_count, uint8_t* buffer);
BAN::ErrorOr<void> write_sectors(uint64_t lba, uint64_t sector_count, const uint8_t* buffer);
BAN::ErrorOr<void> read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer);
BAN::ErrorOr<void> write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer);
virtual uint32_t sector_size() const = 0;
virtual uint64_t total_size() const = 0;
@ -86,8 +86,8 @@ namespace Kernel
virtual bool is_storage_device() const override { return true; }
protected:
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t lba, uint64_t sector_count, uint8_t* buffer) = 0;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t lba, uint64_t sector_count, const uint8_t* buffer) = 0;
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t lba, uint8_t sector_count, uint8_t* buffer) = 0;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t lba, uint8_t sector_count, const uint8_t* buffer) = 0;
void add_disk_cache();
private:

View File

@ -12,7 +12,6 @@ namespace Kernel
static BAN::ErrorOr<BAN::UniqPtr<HPET>> create(bool force_pic);
virtual uint64_t ms_since_boot() const override;
virtual uint64_t ns_since_boot() const override;
virtual timespec time_since_boot() const override;
virtual void handle_irq() override;

View File

@ -12,7 +12,6 @@ namespace Kernel
static BAN::ErrorOr<BAN::UniqPtr<PIT>> create();
virtual uint64_t ms_since_boot() const override;
virtual uint64_t ns_since_boot() const override;
virtual timespec time_since_boot() const override;
virtual void handle_irq() override;

View File

@ -14,7 +14,6 @@ namespace Kernel
public:
virtual ~Timer() {};
virtual uint64_t ms_since_boot() const = 0;
virtual uint64_t ns_since_boot() const = 0;
virtual timespec time_since_boot() const = 0;
};
@ -26,7 +25,6 @@ namespace Kernel
static bool is_initialized();
virtual uint64_t ms_since_boot() const override;
virtual uint64_t ns_since_boot() const override;
virtual timespec time_since_boot() const override;
void sleep(uint64_t ms) const;

View File

@ -26,7 +26,7 @@ namespace Kernel
vaddr_guard.disable();
paddr_guard.disable();
PageTable::kernel().map_range_at(paddr, vaddr, size, PageTable::Flags::CacheDisable | PageTable::Flags::ReadWrite | PageTable::Flags::Present);
PageTable::kernel().map_range_at(paddr, vaddr, size, PageTable::Flags::CacheDisable | PageTable::Flags::ReadWrite | PageTable::Flags::Reserved);
return BAN::UniqPtr<DMARegion>::adopt(region_ptr);
}
@ -40,7 +40,7 @@ namespace Kernel
DMARegion::~DMARegion()
{
PageTable::kernel().unmap_range(m_vaddr, m_size);
Heap::get().release_contiguous_pages(m_paddr, BAN::Math::div_round_up<size_t>(m_size, PAGE_SIZE));
Heap::get().release_contiguous_pages(m_vaddr, BAN::Math::div_round_up<size_t>(m_size, PAGE_SIZE));
}
}

View File

@ -13,7 +13,7 @@ namespace Kernel
PhysicalRange::PhysicalRange(paddr_t paddr, size_t size)
: m_paddr(paddr)
, m_size(size)
, m_bitmap_pages(BAN::Math::div_round_up<size_t>(size / PAGE_SIZE, PAGE_SIZE * 8))
, m_bitmap_pages(BAN::Math::div_round_up<size_t>(size / PAGE_SIZE, 8))
, m_data_pages((size / PAGE_SIZE) - m_bitmap_pages)
, m_free_pages(m_data_pages)
{
@ -26,16 +26,9 @@ namespace Kernel
PageTable::kernel().map_range_at(m_paddr, m_vaddr, size, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
memset((void*)m_vaddr, 0x00, m_bitmap_pages * PAGE_SIZE);
for (ull i = 0; i < m_data_pages / ull_bits; i++)
ull_bitmap_ptr()[i] = ~0ull;
if (m_data_pages % ull_bits)
{
ull off = m_data_pages / ull_bits;
ull bits = m_data_pages % ull_bits;
ull_bitmap_ptr()[off] = ~(~0ull << bits);
}
memset((void*)m_vaddr, 0xFF, m_data_pages / 8);
for (ull i = 0; i < m_data_pages % 8; i++)
((uint8_t*)m_vaddr)[m_data_pages / 8] |= 1 << i;
dprintln("physical range needs {} pages for bitmap", m_bitmap_pages);
}

View File

@ -6,25 +6,12 @@
#include <kernel/Storage/ATA/AHCI/Controller.h>
#include <kernel/Storage/ATA/ATAController.h>
#include <lai/helpers/pci.h>
#define INVALID_VENDOR 0xFFFF
#define MULTI_FUNCTION 0x80
#define CONFIG_ADDRESS 0xCF8
#define CONFIG_DATA 0xCFC
#define PCI_REG_COMMAND 0x04
#define PCI_REG_STATUS 0x06
#define PCI_REG_CAPABILITIES 0x34
#define PCI_REG_IRQ_LINE 0x3C
#define PCI_REG_IRQ_PIN 0x44
#define PCI_CMD_IO_SPACE (1 << 0)
#define PCI_CMD_MEM_SPACE (1 << 1)
#define PCI_CMD_BUS_MASTER (1 << 2)
#define PCI_CMD_INTERRUPT_DISABLE (1 << 10)
#define DEBUG_PCI 1
namespace Kernel::PCI
@ -192,9 +179,10 @@ namespace Kernel::PCI
{
ASSERT(device.header_type() == 0x00);
uint32_t command_status = device.read_dword(0x04);
// disable io/mem space while reading bar
uint16_t command = device.read_word(PCI_REG_COMMAND);
device.write_word(PCI_REG_COMMAND, command & ~(PCI_CMD_IO_SPACE | PCI_CMD_MEM_SPACE));
device.write_dword(0x04, command_status & ~3);
uint8_t offset = 0x10 + bar_num * 4;
@ -236,9 +224,9 @@ namespace Kernel::PCI
auto region = BAN::UniqPtr<BarRegion>::adopt(region_ptr);
TRY(region->initialize());
// restore old command register and enable correct IO/MEM space
command |= (type == BarType::IO) ? PCI_CMD_IO_SPACE : PCI_CMD_MEM_SPACE;
device.write_word(PCI_REG_COMMAND, command);
// restore old command register and enable correct IO/MEM
command_status |= (type == BarType::IO) ? 1 : 2;
device.write_dword(0x04, command_status);
#if DEBUG_PCI
dprintln("created BAR region for PCI {}:{}.{}",
@ -377,115 +365,58 @@ namespace Kernel::PCI
void PCI::Device::enumerate_capabilites()
{
uint16_t status = read_word(PCI_REG_STATUS);
uint16_t status = read_word(0x06);
if (!(status & (1 << 4)))
return;
uint8_t capability_offset = read_byte(PCI_REG_CAPABILITIES) & 0xFC;
while (capability_offset)
uint8_t capabilities = read_byte(0x34) & 0xFC;
while (capabilities)
{
uint16_t capability_info = read_word(capability_offset);
switch (capability_info & 0xFF)
{
case 0x05:
m_offset_msi = capability_offset;
dprintln("{}:{}.{} has MSI", m_bus, m_dev, m_func);
break;
case 0x11:
m_offset_msi_x = capability_offset;
dprintln("{}:{}.{} has MSI-X", m_bus, m_dev, m_func);
break;
default:
break;
}
capability_offset = (capability_info >> 8) & 0xFC;
uint16_t next = read_word(capabilities);
dprintln(" cap {2H}", next & 0xFF);
capabilities = (next >> 8) & 0xFC;
}
}
BAN::ErrorOr<uint8_t> PCI::Device::get_irq()
{
// Legacy PIC just uses the interrupt line field
if (!InterruptController::get().is_using_apic())
return read_byte(PCI_REG_IRQ_LINE);
// TODO: use MSI and MSI-X if supported
if (m_offset_msi.has_value())
{
}
if (m_offset_msi_x.has_value())
{
}
for (uint8_t irq_pin = 1; irq_pin <= 4; irq_pin++)
{
acpi_resource_t dest;
auto err = lai_pci_route_pin(&dest, 0, m_bus, m_dev, m_func, irq_pin);
if (err != LAI_ERROR_NONE)
{
dprintln("{}", lai_api_error_to_string(err));
continue;
}
write_byte(PCI_REG_IRQ_PIN, irq_pin);
return dest.base;
}
dwarnln("Could not allocate interrupt for PCI {}:{}.{}", m_bus, m_dev, m_func);
return BAN::Error::from_errno(ENOTSUP);
}
void PCI::Device::set_command_bits(uint16_t mask)
{
write_dword(PCI_REG_COMMAND, read_dword(PCI_REG_COMMAND) | mask);
}
void PCI::Device::unset_command_bits(uint16_t mask)
{
write_dword(PCI_REG_COMMAND, read_dword(PCI_REG_COMMAND) & ~mask);
}
void PCI::Device::enable_bus_mastering()
{
set_command_bits(PCI_CMD_BUS_MASTER);
write_dword(0x04, read_dword(0x04) | 1u << 2);
}
void PCI::Device::disable_bus_mastering()
{
unset_command_bits(PCI_CMD_BUS_MASTER);
write_dword(0x04, read_dword(0x04) & ~(1u << 2));
}
void PCI::Device::enable_memory_space()
{
set_command_bits(PCI_CMD_MEM_SPACE);
write_dword(0x04, read_dword(0x04) | 1u << 1);
}
void PCI::Device::disable_memory_space()
{
unset_command_bits(PCI_CMD_MEM_SPACE);
write_dword(0x04, read_dword(0x04) & ~(1u << 1));
}
void PCI::Device::enable_io_space()
{
set_command_bits(PCI_CMD_IO_SPACE);
write_dword(0x04, read_dword(0x04) | 1u << 0);
}
void PCI::Device::disable_io_space()
{
unset_command_bits(PCI_CMD_IO_SPACE);
write_dword(0x04, read_dword(0x04) & ~(1u << 0));
}
void PCI::Device::enable_pin_interrupts()
{
unset_command_bits(PCI_CMD_INTERRUPT_DISABLE);
write_dword(0x04, read_dword(0x04) | 1u << 10);
}
void PCI::Device::disable_pin_interrupts()
{
set_command_bits(PCI_CMD_INTERRUPT_DISABLE);
write_dword(0x04, read_dword(0x04) & ~(1u << 10));
}
}

View File

@ -1,120 +0,0 @@
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/PageTable.h>
#include <kernel/Storage/ATA/AHCI/Controller.h>
#include <kernel/Storage/ATA/AHCI/Definitions.h>
#include <kernel/Storage/ATA/AHCI/Device.h>
namespace Kernel
{
BAN::ErrorOr<void> AHCIController::initialize()
{
m_abar = TRY(m_pci_device.allocate_bar_region(5));
if (m_abar->type() != PCI::BarType::MEM)
{
dprintln("ABAR not MMIO");
return BAN::Error::from_errno(EINVAL);
}
auto& abar_mem = *(volatile HBAGeneralMemorySpace*)m_abar->vaddr();
if (!(abar_mem.ghc & SATA_GHC_AHCI_ENABLE))
{
dprintln("Controller not in AHCI mode");
return BAN::Error::from_errno(EINVAL);
}
// Enable interrupts and bus mastering
m_pci_device.enable_bus_mastering();
m_pci_device.enable_pin_interrupts();
set_irq(TRY(m_pci_device.get_irq()));
enable_interrupt();
abar_mem.ghc = abar_mem.ghc | SATA_GHC_INTERRUPT_ENABLE;
m_command_slot_count = ((abar_mem.cap >> 8) & 0x1F) + 1;
uint32_t pi = abar_mem.pi;
for (uint32_t i = 0; i < 32 && pi; i++, pi >>= 1)
{
// Verify we don't access abar outside of its bounds
if (sizeof(HBAGeneralMemorySpace) + i * sizeof(HBAPortMemorySpace) > m_abar->size())
break;
if (!(pi & 1))
continue;
auto type = check_port_type(abar_mem.ports[i]);
if (!type.has_value())
continue;
if (type.value() != AHCIPortType::SATA)
{
dprintln("Non-SATA devices not supported");
continue;
}
auto device = AHCIDevice::create(this, &abar_mem.ports[i]);
if (device.is_error())
{
dprintln("{}", device.error());
continue;
}
m_devices[i] = device.value().ptr();
if (auto ret = m_devices[i]->initialize(); ret.is_error())
{
dprintln("{}", ret.error());
m_devices[i] = nullptr;
}
}
return {};
}
AHCIController::~AHCIController()
{
}
void AHCIController::handle_irq()
{
auto& abar_mem = *(volatile HBAGeneralMemorySpace*)m_abar->vaddr();
uint32_t is = abar_mem.is;
for (uint8_t i = 0; i < 32; i++)
{
if (is & (1 << i))
{
ASSERT(m_devices[i]);
m_devices[i]->handle_irq();
}
}
abar_mem.is = is;
}
BAN::Optional<AHCIPortType> AHCIController::check_port_type(volatile HBAPortMemorySpace& port)
{
uint32_t ssts = port.ssts;
uint8_t ipm = (ssts >> 8) & 0x0F;
uint8_t det = (ssts >> 0) & 0x0F;
if (det != HBA_PORT_DET_PRESENT)
return {};
if (ipm != HBA_PORT_IPM_ACTIVE)
return {};
switch (port.sig)
{
case SATA_SIG_ATA:
return AHCIPortType::SATA;
case SATA_SIG_ATAPI:
return AHCIPortType::SATAPI;
case SATA_SIG_PM:
return AHCIPortType::PM;
case SATA_SIG_SEMB:
return AHCIPortType::SEMB;
}
return {};
}
}

View File

@ -1,276 +0,0 @@
#include <kernel/Storage/ATA/AHCI/Controller.h>
#include <kernel/Storage/ATA/AHCI/Device.h>
#include <kernel/Storage/ATA/ATADefinitions.h>
#include <kernel/Thread.h>
#include <kernel/Timer/Timer.h>
namespace Kernel
{
static void start_cmd(volatile HBAPortMemorySpace* port)
{
while (port->cmd & HBA_PxCMD_CR)
continue;
port->cmd = port->cmd | HBA_PxCMD_FRE;
port->cmd = port->cmd | HBA_PxCMD_ST;
}
static void stop_cmd(volatile HBAPortMemorySpace* port)
{
port->cmd = port->cmd & ~HBA_PxCMD_ST;
port->cmd = port->cmd & ~HBA_PxCMD_FRE;
while (port->cmd & (HBA_PxCMD_FR | HBA_PxCMD_CR))
continue;
}
BAN::ErrorOr<BAN::RefPtr<AHCIDevice>> AHCIDevice::create(BAN::RefPtr<AHCIController> controller, volatile HBAPortMemorySpace* port)
{
auto* device_ptr = new AHCIDevice(controller, port);
if (device_ptr == nullptr)
return BAN::Error::from_errno(ENOMEM);
return BAN::RefPtr<AHCIDevice>::adopt(device_ptr);
}
BAN::ErrorOr<void> AHCIDevice::initialize()
{
TRY(allocate_buffers());
TRY(rebase());
// enable interrupts
m_port->ie = 0xFFFFFFFF;
TRY(read_identify_data());
TRY(detail::ATABaseDevice::initialize({ (const uint16_t*)m_data_dma_region->vaddr(), m_data_dma_region->size() }));
return {};
}
BAN::ErrorOr<void> AHCIDevice::allocate_buffers()
{
uint32_t command_slot_count = m_controller->command_slot_count();
size_t needed_bytes = (sizeof(HBACommandHeader) + sizeof(HBACommandTable)) * command_slot_count + sizeof(ReceivedFIS);
m_dma_region = TRY(DMARegion::create(needed_bytes));
memset((void*)m_dma_region->vaddr(), 0x00, m_dma_region->size());
m_data_dma_region = TRY(DMARegion::create(PAGE_SIZE));
memset((void*)m_data_dma_region->vaddr(), 0x00, m_data_dma_region->size());
return {};
}
BAN::ErrorOr<void> AHCIDevice::rebase()
{
ASSERT(m_dma_region);
uint32_t command_slot_count = m_controller->command_slot_count();
stop_cmd(m_port);
paddr_t fis_paddr = m_dma_region->paddr();
m_port->fb = fis_paddr & 0xFFFFFFFF;
m_port->fbu = fis_paddr >> 32;
paddr_t command_list_paddr = fis_paddr + sizeof(ReceivedFIS);
m_port->clb = command_list_paddr & 0xFFFFFFFF;
m_port->clbu = command_list_paddr >> 32;
auto* command_headers = (HBACommandHeader*)m_dma_region->paddr_to_vaddr(command_list_paddr);
paddr_t command_table_paddr = command_list_paddr + command_slot_count * sizeof(HBACommandHeader);
for (uint32_t i = 0; i < command_slot_count; i++)
{
uint64_t command_table_entry_paddr = command_table_paddr + i * sizeof(HBACommandTable);
command_headers[i].prdtl = s_hba_prdt_count;
command_headers[i].ctba = command_table_entry_paddr & 0xFFFFFFFF;
command_headers[i].ctbau = command_table_entry_paddr >> 32;
}
start_cmd(m_port);
return {};
}
BAN::ErrorOr<void> AHCIDevice::read_identify_data()
{
ASSERT(m_data_dma_region);
m_port->is = ~(uint32_t)0;
auto slot = find_free_command_slot();
ASSERT(slot.has_value());
auto& command_header = ((HBACommandHeader*)m_dma_region->paddr_to_vaddr(m_port->clb))[slot.value()];
command_header.cfl = sizeof(FISRegisterH2D) / sizeof(uint32_t);
command_header.w = 0;
command_header.prdtl = 1;
auto& command_table = *(HBACommandTable*)m_dma_region->paddr_to_vaddr(command_header.ctba);
memset(&command_table, 0x00, sizeof(HBACommandTable));
command_table.prdt_entry[0].dba = m_data_dma_region->paddr();
command_table.prdt_entry[0].dbc = 511;
command_table.prdt_entry[0].i = 1;
auto& command = *(FISRegisterH2D*)command_table.cfis;
command.fis_type = FIS_TYPE_REGISTER_H2D;
command.c = 1;
command.command = ATA_COMMAND_IDENTIFY;
while (m_port->tfd & (ATA_STATUS_BSY | ATA_STATUS_DRQ))
continue;
m_port->ci = 1 << slot.value();
// FIXME: timeout
do { block_until_irq(); } while (m_port->ci & (1 << slot.value()));
return {};
}
static void print_error(uint16_t error)
{
dprintln("Disk error:");
if (error & (1 << 11))
dprintln(" Internal Error");
if (error & (1 << 10))
dprintln(" Protocol Error");
if (error & (1 << 9))
dprintln(" Persistent Communication or Data Integrity Error");
if (error & (1 << 8))
dprintln(" Transient Data Integrity Error");
if (error & (1 << 1))
dprintln(" Recovered Communications Error");
if (error & (1 << 0))
dprintln(" Recovered Data Integrity Error");
}
void AHCIDevice::handle_irq()
{
ASSERT(!m_has_got_irq);
uint16_t err = m_port->serr & 0xFFFF;
if (err)
print_error(err);
m_has_got_irq = true;
}
void AHCIDevice::block_until_irq()
{
while (!__sync_bool_compare_and_swap(&m_has_got_irq, true, false))
__builtin_ia32_pause();
}
BAN::ErrorOr<void> AHCIDevice::read_sectors_impl(uint64_t lba, uint64_t sector_count, uint8_t* buffer)
{
const size_t sectors_per_page = PAGE_SIZE / sector_size();
for (uint64_t sector_off = 0; sector_off < sector_count; sector_off += sectors_per_page)
{
uint64_t to_read = BAN::Math::min<uint64_t>(sector_count - sector_off, sectors_per_page);
TRY(send_command_and_block(lba + sector_off, to_read, Command::Read));
memcpy(buffer + sector_off * sector_size(), (void*)m_data_dma_region->vaddr(), to_read * sector_size());
}
return {};
}
BAN::ErrorOr<void> AHCIDevice::write_sectors_impl(uint64_t lba, uint64_t sector_count, const uint8_t* buffer)
{
const size_t sectors_per_page = PAGE_SIZE / sector_size();
for (uint64_t sector_off = 0; sector_off < sector_count; sector_off += sectors_per_page)
{
uint64_t to_read = BAN::Math::min<uint64_t>(sector_count - sector_off, sectors_per_page);
memcpy((void*)m_data_dma_region->vaddr(), buffer + sector_off * sector_size(), to_read * sector_size());
TRY(send_command_and_block(lba + sector_off, to_read, Command::Write));
}
return {};
}
BAN::ErrorOr<void> AHCIDevice::send_command_and_block(uint64_t lba, uint64_t sector_count, Command command)
{
ASSERT(m_dma_region);
ASSERT(m_data_dma_region);
ASSERT(0 < sector_count && sector_count <= 0xFFFF + 1);
ASSERT(sector_count * sector_size() <= m_data_dma_region->size());
m_port->is = ~(uint32_t)0;
auto slot = find_free_command_slot();
ASSERT(slot.has_value());
auto& command_header = ((HBACommandHeader*)m_dma_region->paddr_to_vaddr(m_port->clb))[slot.value()];
command_header.cfl = sizeof(FISRegisterH2D) / sizeof(uint32_t);
command_header.prdtl = 1;
switch (command)
{
case Command::Read:
command_header.w = 0;
break;
case Command::Write:
command_header.w = 1;
break;
default:
ASSERT_NOT_REACHED();
}
auto& command_table = *(HBACommandTable*)m_dma_region->paddr_to_vaddr(command_header.ctba);
memset(&command_table, 0x00, sizeof(HBACommandTable));
command_table.prdt_entry[0].dba = m_data_dma_region->paddr() & 0xFFFFFFFF;
command_table.prdt_entry[0].dbau = m_data_dma_region->paddr() >> 32;
command_table.prdt_entry[0].dbc = sector_count * sector_size() - 1;
command_table.prdt_entry[0].i = 1;
auto& fis_command = *(FISRegisterH2D*)command_table.cfis;
memset(&fis_command, 0x00, sizeof(FISRegisterH2D));
fis_command.fis_type = FIS_TYPE_REGISTER_H2D;
fis_command.c = 1;
bool need_extended = lba >= (1 << 28) || sector_count > 0xFF;
ASSERT (!need_extended || (m_command_set & ATA_COMMANDSET_LBA48_SUPPORTED));
switch (command)
{
case Command::Read:
fis_command.command = need_extended ? ATA_COMMAND_READ_DMA_EXT : ATA_COMMAND_READ_DMA;
break;
case Command::Write:
fis_command.command = need_extended ? ATA_COMMAND_WRITE_DMA_EXT : ATA_COMMAND_WRITE_DMA;
break;
default:
ASSERT_NOT_REACHED();
}
fis_command.lba0 = (lba >> 0) & 0xFF;
fis_command.lba1 = (lba >> 8) & 0xFF;
fis_command.lba2 = (lba >> 16) & 0xFF;
fis_command.device = 1 << 6; // LBA mode
fis_command.lba3 = (lba >> 24) & 0xFF;
fis_command.lba4 = (lba >> 32) & 0xFF;
fis_command.lba5 = (lba >> 40) & 0xFF;
fis_command.count_lo = (sector_count >> 0) & 0xFF;
fis_command.count_hi = (sector_count >> 8) & 0xFF;
while (m_port->tfd & (ATA_STATUS_BSY | ATA_STATUS_DRQ))
continue;
m_port->ci = 1 << slot.value();
// FIXME: timeout
do { block_until_irq(); } while (m_port->ci & (1 << slot.value()));
return {};
}
BAN::Optional<uint32_t> AHCIDevice::find_free_command_slot()
{
uint32_t slots = m_port->sact | m_port->ci;
for (uint32_t i = 0; i < m_controller->command_slot_count(); i++, slots >>= 1)
if (!(slots & 1))
return i;
return {};
}
}

View File

@ -41,10 +41,6 @@ namespace Kernel
else
device_type = res.value();
// Enable interrupts
select_device(is_secondary);
io_write(ATA_PORT_CONTROL, 0);
auto device_or_error = ATADevice::create(this, device_type, is_secondary, identify_buffer.span());
if (device_or_error.is_error())
@ -54,23 +50,35 @@ namespace Kernel
}
auto device = device_or_error.release_value();
device->ref();
TRY(m_devices.push_back(device.ptr()));
}
// Enable disk interrupts
for (auto& device : m_devices)
{
select_device(device->is_secondary());
io_write(ATA_PORT_CONTROL, 0);
}
return {};
}
static void select_delay()
void ATABus::initialize_devfs()
{
auto time = SystemTimer::get().ns_since_boot();
while (SystemTimer::get().ns_since_boot() < time + 400)
continue;
for (auto& device : m_devices)
{
DevFileSystem::get().add_device(device);
if (auto res = device->initialize_partitions(); res.is_error())
dprintln("{}", res.error());
device->unref();
}
}
void ATABus::select_device(bool secondary)
{
io_write(ATA_PORT_DRIVE_SELECT, 0xA0 | ((uint8_t)secondary << 4));
select_delay();
SystemTimer::get().sleep(1);
}
BAN::ErrorOr<ATABus::DeviceType> ATABus::identify(bool secondary, BAN::Span<uint16_t> buffer)
@ -228,9 +236,6 @@ namespace Kernel
{
// LBA28
io_write(ATA_PORT_DRIVE_SELECT, 0xE0 | ((uint8_t)device.is_secondary() << 4) | ((lba >> 24) & 0x0F));
select_delay();
io_write(ATA_PORT_CONTROL, 0);
io_write(ATA_PORT_SECTOR_COUNT, sector_count);
io_write(ATA_PORT_LBA0, (uint8_t)(lba >> 0));
io_write(ATA_PORT_LBA1, (uint8_t)(lba >> 8));
@ -263,15 +268,14 @@ namespace Kernel
{
// LBA28
io_write(ATA_PORT_DRIVE_SELECT, 0xE0 | ((uint8_t)device.is_secondary() << 4) | ((lba >> 24) & 0x0F));
select_delay();
io_write(ATA_PORT_CONTROL, 0);
io_write(ATA_PORT_SECTOR_COUNT, sector_count);
io_write(ATA_PORT_LBA0, (uint8_t)(lba >> 0));
io_write(ATA_PORT_LBA1, (uint8_t)(lba >> 8));
io_write(ATA_PORT_LBA2, (uint8_t)(lba >> 16));
io_write(ATA_PORT_COMMAND, ATA_COMMAND_WRITE_SECTORS);
SystemTimer::get().sleep(1);
for (uint32_t sector = 0; sector < sector_count; sector++)
{
write_buffer(ATA_PORT_DATA, (uint16_t*)buffer + sector * device.words_per_sector(), device.words_per_sector());

View File

@ -1,5 +1,4 @@
#include <kernel/FS/DevFS/FileSystem.h>
#include <kernel/Storage/ATA/AHCI/Controller.h>
#include <kernel/Storage/ATA/ATABus.h>
#include <kernel/Storage/ATA/ATAController.h>
#include <kernel/Storage/ATA/ATADefinitions.h>
@ -8,7 +7,7 @@
namespace Kernel
{
BAN::ErrorOr<BAN::RefPtr<StorageController>> ATAController::create(PCI::Device& pci_device)
BAN::ErrorOr<BAN::UniqPtr<StorageController>> ATAController::create(PCI::Device& pci_device)
{
StorageController* controller_ptr = nullptr;
@ -21,8 +20,8 @@ namespace Kernel
dwarnln("unsupported DMA ATA Controller");
return BAN::Error::from_errno(ENOTSUP);
case 0x06:
controller_ptr = new AHCIController(pci_device);
break;
dwarnln("unsupported SATA Controller");
return BAN::Error::from_errno(ENOTSUP);
default:
ASSERT_NOT_REACHED();
}
@ -30,7 +29,7 @@ namespace Kernel
if (controller_ptr == nullptr)
return BAN::Error::from_errno(ENOMEM);
auto controller = BAN::RefPtr<StorageController>::adopt(controller_ptr);
auto controller = BAN::UniqPtr<StorageController>::adopt(controller_ptr);
TRY(controller->initialize());
return controller;
}
@ -68,6 +67,9 @@ namespace Kernel
dprintln("unsupported IDE ATABus in native mode");
}
for (auto& bus : buses)
bus->initialize_devfs();
return {};
}

View File

@ -21,11 +21,24 @@ namespace Kernel
return minor++;
}
detail::ATABaseDevice::ATABaseDevice()
: m_rdev(makedev(get_ata_dev_major(), get_ata_dev_minor()))
BAN::ErrorOr<BAN::RefPtr<ATADevice>> ATADevice::create(BAN::RefPtr<ATABus> bus, ATABus::DeviceType type, bool is_secondary, BAN::Span<const uint16_t> identify_data)
{
auto* device_ptr = new ATADevice(bus, type, is_secondary);
if (device_ptr == nullptr)
return BAN::Error::from_errno(ENOMEM);
auto device = BAN::RefPtr<ATADevice>::adopt(device_ptr);
TRY(device->initialize(identify_data));
return device;
}
ATADevice::ATADevice(BAN::RefPtr<ATABus> bus, ATABus::DeviceType type, bool is_secondary)
: m_bus(bus)
, m_type(type)
, m_is_secondary(is_secondary)
, m_rdev(makedev(get_ata_dev_major(), get_ata_dev_minor()))
{ }
BAN::ErrorOr<void> detail::ATABaseDevice::initialize(BAN::Span<const uint16_t> identify_data)
BAN::ErrorOr<void> ATADevice::initialize(BAN::Span<const uint16_t> identify_data)
{
ASSERT(identify_data.size() >= 256);
@ -64,74 +77,41 @@ namespace Kernel
}
m_model[40] = 0;
size_t model_len = 40;
while (model_len > 0 && m_model[model_len - 1] == ' ')
model_len--;
dprintln("Initialized disk '{}' {} MB", BAN::StringView(m_model, model_len), total_size() / 1024 / 1024);
dprintln("ATA disk {} MB", total_size() / 1024 / 1024);
add_disk_cache();
DevFileSystem::get().add_device(this);
if (auto res = initialize_partitions(); res.is_error())
dprintln("{}", res.error());
return {};
}
BAN::ErrorOr<size_t> detail::ATABaseDevice::read_impl(off_t offset, void* buffer, size_t bytes)
BAN::ErrorOr<void> ATADevice::read_sectors_impl(uint64_t lba, uint8_t sector_count, uint8_t* buffer)
{
if (offset % sector_size())
return BAN::Error::from_errno(EINVAL);
if (bytes % sector_size())
TRY(m_bus->read(*this, lba, sector_count, buffer));
return {};
}
BAN::ErrorOr<void> ATADevice::write_sectors_impl(uint64_t lba, uint8_t sector_count, const uint8_t* buffer)
{
TRY(m_bus->write(*this, lba, sector_count, buffer));
return {};
}
BAN::ErrorOr<size_t> ATADevice::read_impl(off_t offset, void* buffer, size_t bytes)
{
ASSERT(offset >= 0);
if (offset % sector_size() || bytes % sector_size())
return BAN::Error::from_errno(EINVAL);
if ((size_t)offset == total_size())
return 0;
TRY(read_sectors(offset / sector_size(), bytes / sector_size(), (uint8_t*)buffer));
return bytes;
}
BAN::ErrorOr<size_t> detail::ATABaseDevice::write_impl(off_t offset, const void* buffer, size_t bytes)
{
if (offset % sector_size())
return BAN::Error::from_errno(EINVAL);
if (bytes % sector_size())
return BAN::Error::from_errno(EINVAL);
TRY(write_sectors(offset / sector_size(), bytes / sector_size(), (const uint8_t*)buffer));
return bytes;
}
BAN::StringView detail::ATABaseDevice::name() const
BAN::StringView ATADevice::name() const
{
static char device_name[] = "sda";
device_name[2] += minor(m_rdev);
return device_name;
}
BAN::ErrorOr<BAN::RefPtr<ATADevice>> ATADevice::create(BAN::RefPtr<ATABus> bus, ATABus::DeviceType type, bool is_secondary, BAN::Span<const uint16_t> identify_data)
{
auto* device_ptr = new ATADevice(bus, type, is_secondary);
if (device_ptr == nullptr)
return BAN::Error::from_errno(ENOMEM);
auto device = BAN::RefPtr<ATADevice>::adopt(device_ptr);
TRY(device->initialize(identify_data));
return device;
}
ATADevice::ATADevice(BAN::RefPtr<ATABus> bus, ATABus::DeviceType type, bool is_secondary)
: m_bus(bus)
, m_type(type)
, m_is_secondary(is_secondary)
{ }
BAN::ErrorOr<void> ATADevice::read_sectors_impl(uint64_t lba, uint64_t sector_count, uint8_t* buffer)
{
TRY(m_bus->read(*this, lba, sector_count, buffer));
return {};
}
BAN::ErrorOr<void> ATADevice::write_sectors_impl(uint64_t lba, uint64_t sector_count, const uint8_t* buffer)
{
TRY(m_bus->write(*this, lba, sector_count, buffer));
return {};
}
}

View File

@ -283,9 +283,9 @@ namespace Kernel
return {};
}
BAN::ErrorOr<void> StorageDevice::read_sectors(uint64_t lba, uint64_t sector_count, uint8_t* buffer)
BAN::ErrorOr<void> StorageDevice::read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer)
{
for (uint64_t offset = 0; offset < sector_count; offset++)
for (uint8_t offset = 0; offset < sector_count; offset++)
{
LockGuard _(m_lock);
Thread::TerminateBlocker blocker(Thread::current());
@ -302,7 +302,7 @@ namespace Kernel
return {};
}
BAN::ErrorOr<void> StorageDevice::write_sectors(uint64_t lba, uint64_t sector_count, const uint8_t* buffer)
BAN::ErrorOr<void> StorageDevice::write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer)
{
// TODO: use disk cache for dirty pages. I don't wanna think about how to do it safely now
for (uint8_t offset = 0; offset < sector_count; offset++)

View File

@ -148,12 +148,6 @@ namespace Kernel
return read_register(HPET_REG_COUNTER) * m_counter_tick_period_fs / FS_PER_MS;
}
uint64_t HPET::ns_since_boot() const
{
// FIXME: 32 bit CPUs should use 32 bit counter with 32 bit reads
return read_register(HPET_REG_COUNTER) * m_counter_tick_period_fs / FS_PER_NS;
}
timespec HPET::time_since_boot() const
{
uint64_t time_fs = read_register(HPET_REG_COUNTER) * m_counter_tick_period_fs;

View File

@ -62,11 +62,6 @@ namespace Kernel
return m_system_time * (MS_PER_S / TICKS_PER_SECOND);
}
uint64_t PIT::ns_since_boot() const
{
return m_system_time * (NS_PER_S / TICKS_PER_SECOND);
}
timespec PIT::time_since_boot() const
{
uint64_t ticks = m_system_time;

View File

@ -59,11 +59,6 @@ namespace Kernel
return m_timer->ms_since_boot();
}
uint64_t SystemTimer::ns_since_boot() const
{
return m_timer->ns_since_boot();
}
timespec SystemTimer::time_since_boot() const
{
return m_timer->time_since_boot();

12
qemu.sh
View File

@ -1,10 +1,8 @@
#!/bin/bash
set -e
qemu-system-$BANAN_ARCH \
-m 128 \
-smp 2 \
-drive format=raw,id=disk,file=${DISK_IMAGE_PATH},if=none \
-device ahci,id=ahci \
-device ide-hd,drive=disk,bus=ahci.0 \
$@ \
qemu-system-$BANAN_ARCH \
-m 128 \
-smp 2 \
-drive format=raw,media=disk,file=${DISK_IMAGE_PATH} \
$@ \