Kernel/LibC: userspace malloc now uses mmap to get memory

We could remove syscalls to allocate more memory. This was not
something the kernel should have done.
This commit is contained in:
Bananymous 2023-09-23 02:26:23 +03:00
parent fee3677fb9
commit f662aa6da2
6 changed files with 225 additions and 45 deletions

View File

@ -68,12 +68,6 @@ namespace Kernel
case SYS_OPENAT: case SYS_OPENAT:
ret = Process::current().sys_openat((int)arg1, (const char*)arg2, (int)arg3, (mode_t)arg4); ret = Process::current().sys_openat((int)arg1, (const char*)arg2, (int)arg3, (mode_t)arg4);
break; break;
case SYS_ALLOC:
ret = Process::current().sys_alloc((size_t)arg1);
break;
case SYS_FREE:
ret = Process::current().sys_free((void*)arg1);
break;
case SYS_SEEK: case SYS_SEEK:
ret = Process::current().sys_seek((int)arg1, (long)arg2, (int)arg3); ret = Process::current().sys_seek((int)arg1, (long)arg2, (int)arg3);
break; break;

View File

@ -7,6 +7,7 @@ set(LIBC_SOURCES
ctype.cpp ctype.cpp
dirent.cpp dirent.cpp
fcntl.cpp fcntl.cpp
malloc.cpp
printf_impl.cpp printf_impl.cpp
pwd.cpp pwd.cpp
signal.cpp signal.cpp

View File

@ -12,9 +12,6 @@ __BEGIN_DECLS
#define SYS_CLOSE 5 #define SYS_CLOSE 5
#define SYS_OPEN 6 #define SYS_OPEN 6
#define SYS_OPENAT 7 #define SYS_OPENAT 7
#define SYS_ALLOC 8
#define SYS_REALLOC 9
#define SYS_FREE 10
#define SYS_SEEK 11 #define SYS_SEEK 11
#define SYS_TELL 12 #define SYS_TELL 12
#define SYS_GET_TERMIOS 13 #define SYS_GET_TERMIOS 13

222
libc/malloc.cpp Normal file
View File

@ -0,0 +1,222 @@
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>
static consteval size_t log_size_t(size_t value, size_t base)
{
size_t result = 0;
while (value /= base)
result++;
return result;
}
static constexpr size_t s_malloc_pool_size_initial = 4096;
static constexpr size_t s_malloc_pool_size_multiplier = 2;
static constexpr size_t s_malloc_pool_count = sizeof(size_t) * 8 - log_size_t(s_malloc_pool_size_initial, s_malloc_pool_size_multiplier);
static constexpr size_t s_malloc_default_align = 16;
struct malloc_node_t
{
bool allocated;
size_t size;
uint8_t data[0];
size_t data_size() const { return size - sizeof(malloc_node_t); }
malloc_node_t* next() { return (malloc_node_t*)(data + data_size()); }
};
struct malloc_pool_t
{
uint8_t* start;
size_t size;
};
static malloc_pool_t s_malloc_pools[s_malloc_pool_count];
void init_malloc()
{
size_t pool_size = s_malloc_pool_size_initial;
for (size_t i = 0; i < s_malloc_pool_count; i++)
{
s_malloc_pools[i].start = nullptr;
s_malloc_pools[i].size = pool_size;
pool_size *= s_malloc_pool_size_multiplier;
}
}
static bool allocate_pool(size_t pool_index)
{
auto& pool = s_malloc_pools[pool_index];
assert(pool.start == nullptr);
// allocate memory for pool
pool.start = (uint8_t*)mmap(nullptr, pool.size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (pool.start == nullptr)
return false;
// initialize pool to single unallocated node
auto* node = (malloc_node_t*)pool.start;
node->allocated = false;
node->size = pool.size;
return true;
}
static void* allocate_from_pool(size_t pool_index, size_t size)
{
assert(size % s_malloc_default_align == 0);
auto& pool = s_malloc_pools[pool_index];
assert(pool.start != nullptr);
uint8_t* pool_end = pool.start + pool.size;
for (auto* node = (malloc_node_t*)pool.start; (uint8_t*)node < pool_end; node = node->next())
{
if (node->allocated)
continue;
{
// merge two unallocated nodes next to each other
auto* next = node->next();
if ((uint8_t*)next < pool_end && !next->allocated)
node->size += next->size;
}
if (node->data_size() < size)
continue;
node->allocated = true;
// shrink node if needed
if (node->data_size() - size > sizeof(malloc_node_t))
{
uint8_t* node_end = (uint8_t*)node->next();
node->size = sizeof(malloc_node_t) + size;
auto* next = node->next();
next->allocated = false;
next->size = node_end - (uint8_t*)next;
}
return node->data;
}
return nullptr;
}
static malloc_node_t* node_from_data_pointer(void* data_pointer)
{
return (malloc_node_t*)((uint8_t*)data_pointer - sizeof(malloc_node_t));
}
void* malloc(size_t size)
{
// align size to s_malloc_default_align boundary
if (size_t ret = size % s_malloc_default_align)
size += s_malloc_default_align - ret;
// find the first pool with size atleast size
size_t first_usable_pool = 0;
while (s_malloc_pools[first_usable_pool].size < size)
first_usable_pool++;
// first_usable_pool = ceil(log(size/s_malloc_smallest_pool, s_malloc_pool_size_mult))
// try to find any already existing pools that we can allocate in
for (size_t i = first_usable_pool; i < s_malloc_pool_count; i++)
if (s_malloc_pools[i].start != nullptr)
if (void* ret = allocate_from_pool(i, size))
return ret;
// allocate new pool
for (size_t i = first_usable_pool; i < s_malloc_pool_count; i++)
{
if (s_malloc_pools[i].start != nullptr)
continue;
if (!allocate_pool(i))
break;
return allocate_from_pool(i, size);
}
errno = ENOMEM;
return nullptr;
}
void* realloc(void* ptr, size_t size)
{
if (ptr == nullptr)
return malloc(size);
// align size to s_malloc_default_align boundary
if (size_t ret = size % s_malloc_default_align)
size += s_malloc_default_align - ret;
auto* node = node_from_data_pointer(ptr);
size_t oldsize = node->data_size();
if (oldsize == size)
return ptr;
// shrink allocation if needed
if (oldsize > size)
{
if (node->data_size() - size > sizeof(malloc_node_t))
{
uint8_t* node_end = (uint8_t*)node->next();
node->size = sizeof(malloc_node_t) + size;
auto* next = node->next();
next->allocated = false;
next->size = node_end - (uint8_t*)next;
}
return ptr;
}
// FIXME: try to expand allocation
// allocate new pointer
void* new_ptr = malloc(size);
if (new_ptr == nullptr)
return nullptr;
// move data to the new pointer
size_t bytes_to_copy = oldsize < size ? oldsize : size;
memcpy(new_ptr, ptr, bytes_to_copy);
free(ptr);
return new_ptr;
}
void free(void* ptr)
{
if (ptr == nullptr)
return;
auto* node = node_from_data_pointer(ptr);
// mark node as unallocated and try to merge with the next node
node->allocated = false;
if (!node->next()->allocated)
node->size += node->next()->size;
}
void* calloc(size_t nmemb, size_t size)
{
size_t total = nmemb * size;
if (size != 0 && total / size != nmemb)
{
errno = ENOMEM;
return nullptr;
}
void* ptr = malloc(total);
if (ptr == nullptr)
return nullptr;
memset(ptr, 0, total);
return ptr;
}

View File

@ -169,42 +169,6 @@ int putenv(char* string)
return 0; return 0;
} }
void* malloc(size_t bytes)
{
long res = syscall(SYS_ALLOC, bytes);
if (res < 0)
return nullptr;
return (void*)res;
}
void* calloc(size_t nmemb, size_t size)
{
if (nmemb * size < nmemb)
return nullptr;
void* ptr = malloc(nmemb * size);
if (ptr == nullptr)
return nullptr;
memset(ptr, 0, nmemb * size);
return ptr;
}
void* realloc(void* ptr, size_t size)
{
if (ptr == nullptr)
return malloc(size);
long ret = syscall(SYS_REALLOC, ptr, size);
if (ret == -1)
return nullptr;
return (void*)ret;
}
void free(void* ptr)
{
if (ptr == nullptr)
return;
syscall(SYS_FREE, ptr);
}
// Constants and algorithm from https://en.wikipedia.org/wiki/Permuted_congruential_generator // Constants and algorithm from https://en.wikipedia.org/wiki/Permuted_congruential_generator
static uint64_t s_rand_state = 0x4d595df4d0f33173; static uint64_t s_rand_state = 0x4d595df4d0f33173;

View File

@ -11,9 +11,11 @@
char** environ; char** environ;
extern void init_malloc();
extern "C" void _init_libc(char** _environ) extern "C" void _init_libc(char** _environ)
{ {
environ = _environ; environ = _environ;
init_malloc();
} }
void _exit(int status) void _exit(int status)