Kernel: Implement read-only FAT12/16/32 driver with long name support

You can now mount FAT filesystems! This code might not work perfectly
but my quick testing seemed to work on all (FAT12/16/32) variants.
This commit is contained in:
Bananymous 2024-06-14 01:02:28 +03:00
parent 6b1d5d28be
commit ea7fc7f6c4
8 changed files with 864 additions and 0 deletions

View File

@ -39,6 +39,7 @@ You can find a live demo [here](https://bananymous.com/banan-os)
#### Filesystems
- [x] Virtual filesystem
- [x] Ext2
- [x] FAT12/16/32
- [x] Dev
- [x] Ram
- [x] Proc

View File

@ -32,6 +32,8 @@ set(KERNEL_SOURCES
kernel/FS/DevFS/FileSystem.cpp
kernel/FS/Ext2/FileSystem.cpp
kernel/FS/Ext2/Inode.cpp
kernel/FS/FAT/FileSystem.cpp
kernel/FS/FAT/Inode.cpp
kernel/FS/FileSystem.cpp
kernel/FS/Inode.cpp
kernel/FS/Pipe.cpp

View File

@ -0,0 +1,158 @@
#pragma once
#include <BAN/String.h>
namespace Kernel::FAT
{
struct ExtBPB_12_16
{
uint8_t drive_number;
uint8_t __reserved0;
uint8_t boot_signature;
uint32_t volume_id;
uint8_t volume_label[11];
uint8_t filesystem_type[8];
uint8_t __reserved1[448];
} __attribute__((packed));
static_assert(sizeof(ExtBPB_12_16) == 510 - 36);
struct ExtBPB_32
{
uint32_t fat_size32;
uint16_t extended_flags;
uint16_t filesystem_version;
uint32_t root_cluster;
uint16_t filesystem_info;
uint16_t backup_boot_sector;
uint8_t __reserved0[12];
uint8_t drive_number;
uint8_t __reserved1;
uint8_t boot_signature;
uint32_t volume_id;
uint8_t volume_label[11];
uint8_t filesystem_type[8];
uint8_t __reserved2[420];
} __attribute__((packed));
static_assert(sizeof(ExtBPB_32) == 510 - 36);
struct BPB
{
uint8_t jump_op[3];
uint8_t oem_name[8];
uint16_t bytes_per_sector;
uint8_t sectors_per_cluster;
uint16_t reserved_sector_count;
uint8_t number_of_fats;
uint16_t root_entry_count;
uint16_t total_sectors16;
uint8_t media_type;
uint16_t fat_size16;
uint16_t sectors_per_track;
uint16_t number_of_heads;
uint32_t hidden_sector_count;
uint32_t total_sectors32;
union
{
ExtBPB_12_16 ext_12_16;
ExtBPB_32 ext_32;
};
uint16_t Signature_word;
} __attribute__((packed));
static_assert(sizeof(BPB) == 512);
struct Date
{
uint16_t day : 5;
uint16_t month : 4;
uint16_t year : 7;
};
struct Time
{
uint16_t second : 5;
uint16_t minute : 6;
uint16_t hour : 5;
};
struct DirectoryEntry
{
uint8_t name[11];
uint8_t attr;
uint8_t ntres;
uint8_t creation_time_hundreth;
Time creation_time;
Date creation_date;
Date last_access_date;
uint16_t first_cluster_hi;
Time write_time;
Date write_date;
uint16_t first_cluster_lo;
uint32_t file_size;
BAN::String name_as_string() const
{
static_assert(BAN::String::sso_capacity >= 8 + 3 + 1);
BAN::String short_name;
MUST(short_name.append(BAN::StringView((const char*)&name[0], 8)));
while (short_name.back() == ' ')
short_name.pop_back();
MUST(short_name.push_back('.'));
MUST(short_name.append(BAN::StringView((const char*)&name[8], 3)));
while (short_name.back() == ' ')
short_name.pop_back();
if (short_name.back() == '.')
short_name.pop_back();
return short_name;
}
} __attribute__((packed));
static_assert(sizeof(DirectoryEntry) == 32);
struct LongNameEntry
{
uint8_t order;
uint16_t name1[5];
uint8_t attr;
uint8_t type;
uint8_t checksum;
uint16_t name2[6];
uint16_t first_cluster_lo;
uint16_t name3[2];
BAN::String name_as_string() const
{
static_assert(BAN::String::sso_capacity >= 13);
BAN::String result;
for (uint16_t ch : name1) {
if (ch == 0)
return result;
MUST(result.push_back(ch));
}
for (uint16_t ch : name2) {
if (ch == 0)
return result;
MUST(result.push_back(ch));
}
for (uint16_t ch : name3) {
if (ch == 0)
return result;
MUST(result.push_back(ch));
}
return result;
}
} __attribute__((packed));
static_assert(sizeof(LongNameEntry) == 32);
enum FileAttr : uint8_t
{
READ_ONLY = 0x01,
HIDDEN = 0x02,
SYSTEM = 0x04,
VOLUME_ID = 0x08,
DIRECTORY = 0x10,
ARCHIVE = 0x20,
};
}

View File

@ -0,0 +1,72 @@
#pragma once
#include <BAN/HashMap.h>
#include <kernel/FS/FAT/Definitions.h>
#include <kernel/FS/FAT/Inode.h>
#include <kernel/FS/FileSystem.h>
namespace Kernel
{
class FATFS final : public FileSystem
{
public:
enum class Type
{
FAT12 = 12,
FAT16 = 16,
FAT32 = 32,
};
public:
static BAN::ErrorOr<bool> probe(BAN::RefPtr<BlockDevice>);
static BAN::ErrorOr<BAN::RefPtr<FATFS>> create(BAN::RefPtr<BlockDevice>);
virtual BAN::RefPtr<Inode> root_inode() override { return m_root_inode; }
virtual dev_t dev() const override { return m_block_device->rdev(); };
BAN::ErrorOr<BAN::RefPtr<FATInode>> open_inode(BAN::RefPtr<FATInode> parent, const FAT::DirectoryEntry& entry, uint32_t cluster_index, uint32_t entry_index);
BAN::ErrorOr<void> inode_read_cluster(BAN::RefPtr<FATInode>, size_t index, BAN::ByteSpan buffer);
blksize_t inode_block_size(BAN::RefPtr<const FATInode>) const;
private:
FATFS(BAN::RefPtr<BlockDevice> block_device, FAT::BPB bpb)
: m_block_device(block_device)
, m_bpb(bpb)
, m_type((cluster_count() < 4085) ? Type::FAT12 : (cluster_count() < 65525) ? Type::FAT16 : Type::FAT32)
{}
static bool validate_bpb(const FAT::BPB&);
BAN::ErrorOr<void> initialize();
BAN::ErrorOr<void> fat_cache_set_sector(uint32_t sector);
BAN::ErrorOr<uint32_t> get_next_cluster(uint32_t cluster);
// TODO: These probably should be constant variables
uint32_t root_sector_count() const { return BAN::Math::div_round_up<uint32_t>(m_bpb.root_entry_count * 32, m_bpb.bytes_per_sector); }
uint32_t fat_sector_count() const { return m_bpb.fat_size16 ? m_bpb.fat_size16 : m_bpb.ext_32.fat_size32; }
uint32_t total_sector_count() const { return m_bpb.total_sectors16 ? m_bpb.total_sectors16 : m_bpb.total_sectors32; }
uint32_t data_sector_count() const { return total_sector_count() - (m_bpb.reserved_sector_count + (m_bpb.number_of_fats * fat_sector_count()) + root_sector_count()); }
uint32_t cluster_count() const { return data_sector_count() / m_bpb.sectors_per_cluster; }
uint32_t first_data_sector() const { return m_bpb.reserved_sector_count + (m_bpb.number_of_fats * fat_sector_count()) + root_sector_count(); }
uint32_t first_fat_sector() const { return m_bpb.reserved_sector_count; }
private:
const FAT::BPB m_bpb;
const Type m_type;
BAN::RefPtr<BlockDevice> m_block_device;
BAN::RefPtr<FATInode> m_root_inode;
BAN::HashMap<ino_t, BAN::WeakPtr<FATInode>> m_inode_cache;
BAN::Vector<uint8_t> m_fat_two_sector_buffer;
uint32_t m_fat_sector_buffer_current { 0 };
Mutex m_mutex;
friend class BAN::RefPtr<FATFS>;
};
}

View File

@ -0,0 +1,72 @@
#pragma once
#include <BAN/Function.h>
#include <BAN/Iteration.h>
#include <BAN/WeakPtr.h>
#include <kernel/FS/FAT/Definitions.h>
#include <kernel/FS/Inode.h>
namespace Kernel
{
class FATFS;
class FATInode final : public Inode, public BAN::Weakable<FATInode>
{
public:
virtual ino_t ino() const override { return m_ino; };
virtual Mode mode() const override { return Mode { ((m_entry.attr & FAT::FileAttr::DIRECTORY) ? Mode::IFDIR : Mode::IFREG) | 0777 }; }
virtual nlink_t nlink() const override { return 1; }
virtual uid_t uid() const override { return 0; }
virtual gid_t gid() const override { return 0; }
virtual off_t size() const override { return m_entry.file_size; }
virtual timespec atime() const override;
virtual timespec mtime() const override;
virtual timespec ctime() const override;
virtual blksize_t blksize() const override;
virtual blkcnt_t blocks() const override { return m_block_count; }
virtual dev_t dev() const override { return 0; }
virtual dev_t rdev() const override { return 0; }
const FAT::DirectoryEntry& entry() const { return m_entry; }
protected:
virtual BAN::ErrorOr<BAN::RefPtr<Inode>> find_inode_impl(BAN::StringView) override;
virtual BAN::ErrorOr<size_t> list_next_inodes_impl(off_t, struct dirent*, size_t) override;
//virtual BAN::ErrorOr<void> create_file_impl(BAN::StringView, mode_t, uid_t, gid_t) override;
//virtual BAN::ErrorOr<void> create_directory_impl(BAN::StringView, mode_t, uid_t, gid_t) override;
//virtual BAN::ErrorOr<void> unlink_impl(BAN::StringView) override;
virtual BAN::ErrorOr<size_t> read_impl(off_t, BAN::ByteSpan) override;
//virtual BAN::ErrorOr<size_t> write_impl(off_t, BAN::ConstByteSpan) override;
//virtual BAN::ErrorOr<void> truncate_impl(size_t) override;
//virtual BAN::ErrorOr<void> chmod_impl(mode_t) override;
virtual bool can_read_impl() const override { return true; }
virtual bool can_write_impl() const override { return true; }
virtual bool has_error_impl() const override { return false; }
private:
FATInode(FATFS& fs, const FAT::DirectoryEntry& entry, ino_t ino, uint32_t block_count)
: m_fs(fs)
, m_entry(entry)
, m_ino(ino)
, m_block_count(block_count)
{ }
~FATInode() {}
BAN::ErrorOr<void> for_each_directory_entry(BAN::ConstByteSpan, BAN::Function<BAN::Iteration(const FAT::DirectoryEntry&)>);
BAN::ErrorOr<void> for_each_directory_entry(BAN::ConstByteSpan, BAN::Function<BAN::Iteration(const FAT::DirectoryEntry&, BAN::String, uint32_t)>);
private:
FATFS& m_fs;
FAT::DirectoryEntry m_entry;
const ino_t m_ino;
uint32_t m_block_count;
friend class Ext2FS;
friend class BAN::RefPtr<FATInode>;
};
}

View File

@ -0,0 +1,276 @@
#include <kernel/FS/FAT/FileSystem.h>
#include <kernel/Lock/LockGuard.h>
#include <ctype.h>
namespace Kernel
{
bool FATFS::validate_bpb(const FAT::BPB& bpb)
{
bool valid_jump_op = (bpb.jump_op[0] == 0xEB && bpb.jump_op[2] == 0x90) || (bpb.jump_op[0] == 0xE9);
if (!valid_jump_op)
return false;
// This is techincally a strict requirement
for (char c : bpb.oem_name)
if (!isprint(c))
return false;
if (!BAN::Math::is_power_of_two(bpb.bytes_per_sector) || bpb.bytes_per_sector < 512 || bpb.bytes_per_sector > 4096)
return false;
if (!BAN::Math::is_power_of_two(bpb.sectors_per_cluster) || bpb.sectors_per_cluster > 128)
return false;
if (bpb.reserved_sector_count == 0)
return false;
if (bpb.number_of_fats == 0)
return false;
switch (bpb.media_type)
{
case 0xF0:
case 0xF8:
case 0xF9:
case 0xFA:
case 0xFB:
case 0xFC:
case 0xFD:
case 0xFE:
case 0xFF:
break;
default:
return false;
}
// FIXME: There is more possible checks to do
return true;
}
BAN::ErrorOr<bool> FATFS::probe(BAN::RefPtr<BlockDevice> block_device)
{
// support only block devices with sectors at least 512 bytes
if (block_device->blksize() < 512)
return false;
BAN::Vector<uint8_t> bpb_buffer;
TRY(bpb_buffer.resize(block_device->blksize()));
auto bpb_span = BAN::ByteSpan(bpb_buffer.span());
TRY(block_device->read_blocks(0, 1, bpb_span));
return validate_bpb(bpb_span.as<const FAT::BPB>());
}
BAN::ErrorOr<BAN::RefPtr<FATFS>> FATFS::create(BAN::RefPtr<BlockDevice> block_device)
{
// support only block devices with sectors at least 512 bytes
if (block_device->blksize() < 512)
return BAN::Error::from_errno(EINVAL);
BAN::Vector<uint8_t> bpb_buffer;
TRY(bpb_buffer.resize(block_device->blksize()));
auto bpb_span = BAN::ByteSpan(bpb_buffer.span());
TRY(block_device->read_blocks(0, 1, bpb_span));
const auto& bpb = bpb_span.as<const FAT::BPB>();
if (!validate_bpb(bpb))
return BAN::Error::from_errno(EINVAL);
auto fatfs = TRY(BAN::RefPtr<FATFS>::create(
block_device,
bpb
));
TRY(fatfs->initialize());
return fatfs;
}
BAN::ErrorOr<void> FATFS::initialize()
{
if (m_bpb.bytes_per_sector != m_block_device->blksize())
{
dwarnln("FileSystem sector size does not match with block device");
return BAN::Error::from_errno(ENOTSUP);
}
TRY(m_fat_two_sector_buffer.resize(m_bpb.bytes_per_sector * 2));
TRY(m_block_device->read_blocks(first_fat_sector(), 2, BAN::ByteSpan(m_fat_two_sector_buffer.span())));
m_fat_sector_buffer_current = 0;
FAT::DirectoryEntry root_entry {};
root_entry.attr = FAT::FileAttr::DIRECTORY;
m_root_inode = TRY(open_inode(nullptr, root_entry, 0, 0));
return {};
}
BAN::ErrorOr<BAN::RefPtr<FATInode>> FATFS::open_inode(BAN::RefPtr<FATInode> parent, const FAT::DirectoryEntry& entry, uint32_t cluster_index, uint32_t entry_index)
{
LockGuard _(m_mutex);
uint32_t block_count = 0;
{
uint32_t cluster = entry.first_cluster_lo;
if (m_type == Type::FAT32)
cluster |= static_cast<uint32_t>(entry.first_cluster_hi) << 16;
while (cluster >= 2 && cluster < cluster_count())
{
block_count++;
cluster = TRY(get_next_cluster(cluster));
}
}
uint32_t entry_cluster;
switch (m_type)
{
case Type::FAT12:
case Type::FAT16:
if (parent == m_root_inode)
entry_cluster = 1;
else
{
entry_cluster = parent->entry().first_cluster_lo;
for (uint32_t i = 0; i < cluster_index; i++)
entry_cluster = TRY(get_next_cluster(entry_cluster));
}
break;
case Type::FAT32:
if (parent == m_root_inode)
entry_cluster = m_bpb.ext_32.root_cluster;
else
entry_cluster = (static_cast<uint32_t>(parent->entry().first_cluster_hi) << 16) | parent->entry().first_cluster_lo;
for (uint32_t i = 0; i < cluster_index; i++)
entry_cluster = TRY(get_next_cluster(entry_cluster));
break;
default:
ASSERT_NOT_REACHED();
}
const ino_t ino = (static_cast<ino_t>(entry_cluster) << 32) | entry_index;
auto it = m_inode_cache.find(ino);
if (it != m_inode_cache.end())
{
if (auto inode = it->value.lock())
return inode;
m_inode_cache.remove(it);
}
auto inode = TRY(BAN::RefPtr<FATInode>::create(*this, entry, ino, block_count));
TRY(m_inode_cache.insert(ino, TRY(inode->get_weak_ptr())));
return inode;
}
BAN::ErrorOr<void> FATFS::fat_cache_set_sector(uint32_t sector)
{
if (m_fat_sector_buffer_current != sector)
{
TRY(m_block_device->read_blocks(first_fat_sector() + sector, 2, BAN::ByteSpan(m_fat_two_sector_buffer.span())));
m_fat_sector_buffer_current = sector;
}
return {};
}
BAN::ErrorOr<uint32_t> FATFS::get_next_cluster(uint32_t cluster)
{
LockGuard _(m_mutex);
ASSERT(cluster >= 2 && cluster < cluster_count());
auto fat_span = BAN::ByteSpan(m_fat_two_sector_buffer.span());
switch (m_type)
{
case Type::FAT12:
{
const uint32_t fat_byte_offset = cluster + (cluster / 2);
const uint32_t ent_offset = fat_byte_offset % m_bpb.bytes_per_sector;
TRY(fat_cache_set_sector(fat_byte_offset / m_bpb.bytes_per_sector));
uint16_t next = (fat_span[ent_offset + 1] << 8) | fat_span[ent_offset];
return cluster % 2 ? next >> 4 : next & 0xFFF;
}
case Type::FAT16:
{
const uint32_t fat_byte_offset = cluster * sizeof(uint16_t);
const uint32_t ent_offset = (fat_byte_offset % m_bpb.bytes_per_sector) / sizeof(uint16_t);
TRY(fat_cache_set_sector(fat_byte_offset / m_bpb.bytes_per_sector));
return fat_span.as_span<uint16_t>()[ent_offset];
}
case Type::FAT32:
{
const uint32_t fat_byte_offset = cluster * sizeof(uint32_t);
const uint32_t ent_offset = (fat_byte_offset % m_bpb.bytes_per_sector) / sizeof(uint32_t);
TRY(fat_cache_set_sector(fat_byte_offset / m_bpb.bytes_per_sector));
return fat_span.as_span<uint32_t>()[ent_offset];
}
}
ASSERT_NOT_REACHED();
}
BAN::ErrorOr<void> FATFS::inode_read_cluster(BAN::RefPtr<FATInode> file, size_t index, BAN::ByteSpan buffer)
{
LockGuard _(m_mutex);
if (buffer.size() < static_cast<BAN::make_unsigned_t<decltype(file->blksize())>>(file->blksize()))
return BAN::Error::from_errno(ENOBUFS);
uint32_t cluster;
switch (m_type)
{
case Type::FAT12:
case Type::FAT16:
{
if (file == m_root_inode)
{
if (index >= root_sector_count())
return BAN::Error::from_errno(ENOENT);
const uint32_t first_root_sector = m_bpb.reserved_sector_count + (m_bpb.number_of_fats * fat_sector_count());
TRY(m_block_device->read_blocks(first_root_sector + index, 1, buffer));
return {};
}
cluster = file->entry().first_cluster_lo;
break;
}
case Type::FAT32:
if (file == m_root_inode)
cluster = m_bpb.ext_32.root_cluster;
else
cluster = (static_cast<uint32_t>(file->entry().first_cluster_hi) << 16) | file->entry().first_cluster_lo;
break;
default:
ASSERT_NOT_REACHED();
}
if (cluster < 2 || cluster >= cluster_count())
return BAN::Error::from_errno(ENOENT);
for (uint32_t i = 0; i < index; i++)
{
cluster = TRY(get_next_cluster(cluster));
if (cluster < 2 || cluster >= cluster_count())
return BAN::Error::from_errno(ENOENT);
}
const uint32_t cluster_start_sector = ((cluster - 2) * m_bpb.sectors_per_cluster) + first_data_sector();
TRY(m_block_device->read_blocks(cluster_start_sector, m_bpb.sectors_per_cluster, buffer));
return {};
}
blksize_t FATFS::inode_block_size(BAN::RefPtr<const FATInode> file) const
{
switch (m_type)
{
case Type::FAT12:
case Type::FAT16:
if (file == m_root_inode)
return m_bpb.bytes_per_sector;
return m_bpb.bytes_per_sector * m_bpb.sectors_per_cluster;
case Type::FAT32:
return m_bpb.bytes_per_sector * m_bpb.sectors_per_cluster;
}
ASSERT_NOT_REACHED();
}
}

View File

@ -0,0 +1,280 @@
#include <BAN/Time.h>
#include <kernel/FS/FAT/FileSystem.h>
#include <kernel/FS/FAT/Inode.h>
#include <ctype.h>
namespace Kernel
{
static uint64_t fat_date_to_epoch(FAT::Date date, FAT::Time time)
{
BAN::Time ban_time {};
ban_time.year = (date.year % 128) + 1980;
ban_time.month = ((date.month - 1) % 12) + 1;
ban_time.day = ((date.day - 1) % 31) + 1;
ban_time.hour = (time.hour % 24);
ban_time.minute = (time.minute % 60);
ban_time.second = (time.second % 30) * 2;
return BAN::to_unix_time(ban_time);
}
blksize_t FATInode::blksize() const
{
return m_fs.inode_block_size(this);
}
timespec FATInode::atime() const
{
uint64_t epoch = fat_date_to_epoch(m_entry.last_access_date, {});
return timespec { .tv_sec = epoch, .tv_nsec = 0 };
}
timespec FATInode::mtime() const
{
uint64_t epoch = fat_date_to_epoch(m_entry.write_date, m_entry.write_time);
return timespec { .tv_sec = epoch, .tv_nsec = 0 };
}
timespec FATInode::ctime() const
{
uint64_t epoch = fat_date_to_epoch(m_entry.creation_date, m_entry.creation_time);
return timespec { .tv_sec = epoch, .tv_nsec = 0 };
}
BAN::ErrorOr<void> FATInode::for_each_directory_entry(BAN::ConstByteSpan entry_span, BAN::Function<BAN::Iteration(const FAT::DirectoryEntry&)> callback)
{
ASSERT(mode().ifdir());
auto directory_entries = entry_span.as_span<const FAT::DirectoryEntry>();
for (uint32_t i = 0; i < directory_entries.size(); i++)
{
const auto& directory_entry = directory_entries[i];
if ((uint8_t)directory_entry.name[0] == 0xE5)
continue;
if (directory_entry.name[0] == 0)
break;
if ((directory_entry.attr & 0x3F) == 0x0F)
continue;
if (callback(directory_entry) == BAN::Iteration::Break)
return {};
}
return {};
}
BAN::ErrorOr<void> FATInode::for_each_directory_entry(BAN::ConstByteSpan entry_span, BAN::Function<BAN::Iteration(const FAT::DirectoryEntry&, BAN::String, uint32_t)> callback)
{
ASSERT(mode().ifdir());
BAN::String long_name;
auto directory_entries = entry_span.as_span<const FAT::DirectoryEntry>();
auto long_name_entries = entry_span.as_span<const FAT::LongNameEntry>();
for (uint32_t i = 0; i < directory_entries.size(); i++)
{
const auto& directory_entry = directory_entries[i];
if ((uint8_t)directory_entry.name[0] == 0xE5)
continue;
if (directory_entry.name[0] == 0)
break;
if ((directory_entry.attr & 0x3F) == 0x0F)
{
if (!long_name.empty())
{
dwarnln("Invalid long name entry");
continue;
}
const auto& long_name_entry = long_name_entries[i];
if (!(long_name_entry.order & 0x40))
{
dwarnln("Invalid long name entry");
continue;
}
const uint32_t long_name_entry_count = long_name_entry.order & ~0x40;
if (i + long_name_entry_count >= directory_entries.size())
{
dwarnln("Invalid long name entry");
continue;
}
for (uint32_t j = 0; j < long_name_entry_count; j++)
TRY(long_name.insert(long_name_entries[i + j].name_as_string(), 0));
i += long_name_entry_count - 1;
continue;
}
auto ret = callback(directory_entry, BAN::move(long_name), i);
if (ret == BAN::Iteration::Break)
return {};
long_name.clear();
}
return {};
}
BAN::ErrorOr<BAN::RefPtr<Inode>> FATInode::find_inode_impl(BAN::StringView name)
{
ASSERT(mode().ifdir());
BAN::Vector<uint8_t> cluster_buffer;
TRY(cluster_buffer.resize(blksize()));
auto cluster_span = BAN::ByteSpan(cluster_buffer.span());
for (uint32_t cluster_index = 0;; cluster_index++)
{
// Returns ENOENT if this cluster is out of bounds
TRY(m_fs.inode_read_cluster(this, cluster_index, cluster_span));
auto error = BAN::Error::from_errno(0);
BAN::RefPtr<FATInode> result;
TRY(for_each_directory_entry(cluster_span,
[&](const FAT::DirectoryEntry& entry, BAN::String long_name, uint32_t entry_index)
{
BAN::String file_name = long_name.empty() ? entry.name_as_string() : BAN::move(long_name);
if (file_name.size() != name.size())
return BAN::Iteration::Continue;
for (size_t i = 0; i < name.size(); i++)
if (tolower(name[i]) != tolower(file_name[i]))
return BAN::Iteration::Continue;
auto new_inode = m_fs.open_inode(this, entry, cluster_index, entry_index);
if (new_inode.is_error())
error = new_inode.release_error();
else
result = new_inode.release_value();
return BAN::Iteration::Break;
}
));
if (error.get_error_code())
return error;
if (result)
return BAN::RefPtr<Inode>(result);
}
return BAN::Error::from_errno(ENOENT);
}
BAN::ErrorOr<size_t> FATInode::list_next_inodes_impl(off_t offset, struct dirent* list, size_t list_size)
{
ASSERT(mode().ifdir());
ASSERT(offset >= 0);
BAN::Vector<uint8_t> cluster_buffer;
TRY(cluster_buffer.resize(blksize()));
auto cluster_span = BAN::ByteSpan(cluster_buffer.span());
{
auto maybe_error = m_fs.inode_read_cluster(this, offset, cluster_span);
if (maybe_error.is_error())
{
if (maybe_error.error().get_error_code() == ENOENT)
return 0;
return maybe_error.release_error();
}
}
size_t valid_entry_count = 0;
TRY(for_each_directory_entry(cluster_span,
[&](const FAT::DirectoryEntry&)
{
valid_entry_count++;
return BAN::Iteration::Continue;
}
));
if (valid_entry_count > list_size)
return BAN::Error::from_errno(ENOBUFS);
TRY(for_each_directory_entry(cluster_span,
[&](const FAT::DirectoryEntry& entry, const BAN::String& long_name, uint32_t)
{
BAN::String name = long_name.empty() ? entry.name_as_string() : BAN::move(long_name);
list->d_ino = 0;
list->d_type = (entry.attr & FAT::FileAttr::DIRECTORY) ? DT_DIR : DT_REG;
strncpy(list->d_name, name.data(), sizeof(list->d_name));
list++;
return BAN::Iteration::Continue;
}
));
return valid_entry_count;
}
BAN::ErrorOr<size_t> FATInode::read_impl(off_t offset, BAN::ByteSpan buffer)
{
ASSERT(offset >= 0);
if (offset >= m_entry.file_size)
return 0;
if (offset + buffer.size() > m_entry.file_size)
buffer = buffer.slice(0, m_entry.file_size - offset);
BAN::Vector<uint8_t> cluster_buffer;
TRY(cluster_buffer.resize(blksize()));
auto cluster_span = BAN::ByteSpan(cluster_buffer.span());
const uint32_t block_size = blksize();
size_t nread = 0;
if (auto rem = offset % block_size)
{
const uint32_t to_read = BAN::Math::min<uint32_t>(buffer.size(), block_size - rem);
if (auto ret = m_fs.inode_read_cluster(this, offset / block_size, cluster_span); ret.is_error())
{
if (ret.error().get_error_code() == ENOENT)
return nread;
return ret.release_error();
}
memcpy(buffer.data(), cluster_span.data() + rem, to_read);
nread += to_read;
offset += to_read;
buffer = buffer.slice(to_read);
}
while (buffer.size() >= block_size)
{
if (auto ret = m_fs.inode_read_cluster(this, offset / block_size, buffer); ret.is_error())
{
if (ret.error().get_error_code() == ENOENT)
return nread;
return ret.release_error();
}
nread += block_size;
offset += block_size;
buffer = buffer.slice(block_size);
}
if (buffer.size() > 0)
{
if (auto ret = m_fs.inode_read_cluster(this, offset / block_size, cluster_span); ret.is_error())
{
if (ret.error().get_error_code() == ENOENT)
return nread;
return ret.release_error();
}
memcpy(buffer.data(), cluster_span.data(), buffer.size());
nread += buffer.size();
offset += buffer.size();
buffer = buffer.slice(buffer.size());
}
return nread;
}
}

View File

@ -1,4 +1,5 @@
#include <kernel/FS/Ext2/FileSystem.h>
#include <kernel/FS/FAT/FileSystem.h>
#include <kernel/FS/FileSystem.h>
namespace Kernel
@ -8,6 +9,8 @@ namespace Kernel
{
if (auto res = Ext2FS::probe(block_device); !res.is_error() && res.value())
return BAN::RefPtr<FileSystem>(TRY(Ext2FS::create(block_device)));
if (auto res = FATFS::probe(block_device); !res.is_error() && res.value())
return BAN::RefPtr<FileSystem>(TRY(FATFS::create(block_device)));
dprintln("Unsupported filesystem");
return BAN::Error::from_errno(ENOTSUP);
}