Kernel: add basic disk cache

ATADevices now add disk cache to themselves
This commit is contained in:
Bananymous 2023-06-03 02:23:14 +03:00
parent 2b901abfb1
commit 813d0f1b5f
8 changed files with 342 additions and 9 deletions

View File

@ -46,6 +46,7 @@ set(KERNEL_SOURCES
kernel/Storage/ATABus.cpp
kernel/Storage/ATAController.cpp
kernel/Storage/ATADevice.cpp
kernel/Storage/DiskCache.cpp
kernel/Storage/StorageDevice.cpp
kernel/Syscall.cpp
kernel/Syscall.S

View File

@ -15,13 +15,15 @@ namespace Kernel
{ }
BAN::ErrorOr<void> initialize(ATABus::DeviceType, const uint16_t*);
virtual BAN::ErrorOr<void> read_sectors(uint64_t, uint8_t, uint8_t*) override;
virtual BAN::ErrorOr<void> write_sectors(uint64_t, uint8_t, const uint8_t*) override;
virtual uint32_t sector_size() const override { return m_sector_words * 2; }
virtual uint64_t total_size() const override { return m_lba_count * sector_size(); }
BAN::StringView model() const { return m_model; }
protected:
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t, uint8_t, uint8_t*) override;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t, uint8_t, const uint8_t*) override;
private:
ATABus* m_bus;
uint8_t m_index;

View File

@ -0,0 +1,47 @@
#pragma once
#include <BAN/Array.h>
#include <kernel/Memory/Types.h>
#include <kernel/SpinLock.h>
namespace Kernel
{
class StorageDevice;
class DiskCache
{
public:
DiskCache(StorageDevice&);
~DiskCache();
BAN::ErrorOr<void> read_sector(uint64_t sector, uint8_t* buffer);
BAN::ErrorOr<void> write_sector(uint64_t sector, const uint8_t* buffer);
size_t release_clean_pages(size_t);
size_t release_pages(size_t);
void release_all_pages();
private:
struct SectorCache
{
uint64_t sector { 0 };
bool dirty { false };
};
struct CacheBlock
{
paddr_t paddr { 0 };
BAN::Array<SectorCache, 4> sectors;
void sync(StorageDevice&);
void read_sector(StorageDevice&, size_t, uint8_t*);
void write_sector(StorageDevice&, size_t, const uint8_t*);
};
private:
SpinLock m_lock;
StorageDevice& m_device;
BAN::Vector<CacheBlock> m_cache;
};
}

View File

@ -2,6 +2,7 @@
#include <BAN/Vector.h>
#include <kernel/Device.h>
#include <kernel/Storage/DiskCache.h>
namespace Kernel
{
@ -61,20 +62,29 @@ namespace Kernel
class StorageDevice : public BlockDevice
{
public:
virtual ~StorageDevice() {}
virtual ~StorageDevice();
BAN::ErrorOr<void> initialize_partitions();
virtual BAN::ErrorOr<void> read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer) = 0;
virtual BAN::ErrorOr<void> write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer) = 0;
BAN::ErrorOr<void> read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer);
BAN::ErrorOr<void> write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer);
virtual uint32_t sector_size() const = 0;
virtual uint64_t total_size() const = 0;
BAN::Vector<Partition*>& partitions() { return m_partitions; }
const BAN::Vector<Partition*>& partitions() const { return m_partitions; }
protected:
virtual BAN::ErrorOr<void> read_sectors_impl(uint64_t lba, uint8_t sector_count, uint8_t* buffer) = 0;
virtual BAN::ErrorOr<void> write_sectors_impl(uint64_t lba, uint8_t sector_count, const uint8_t* buffer) = 0;
void add_disk_cache();
private:
DiskCache* m_disk_cache { nullptr };
BAN::Vector<Partition*> m_partitions;
friend class DiskCache;
};
}

View File

@ -68,7 +68,6 @@ namespace Kernel
BAN::ScopeGuard guard([this, i] { m_devices[i]->unref(); m_devices[i] = nullptr; });
auto type = identify(device, identify_buffer);
if (type == DeviceType::None)
continue;
@ -109,7 +108,7 @@ namespace Kernel
io_write(ATA_PORT_COMMAND, ATA_COMMAND_IDENTIFY);
PIT::sleep(1);
// No device on port
if (io_read(ATA_PORT_STATUS) == 0)
return DeviceType::None;

View File

@ -53,16 +53,18 @@ namespace Kernel
dprintln("{} {} MB", m_device_name, total_size() / 1024 / 1024);
add_disk_cache();
return {};
}
BAN::ErrorOr<void> ATADevice::read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer)
BAN::ErrorOr<void> ATADevice::read_sectors_impl(uint64_t lba, uint8_t sector_count, uint8_t* buffer)
{
TRY(m_bus->read(this, lba, sector_count, buffer));
return {};
}
BAN::ErrorOr<void> ATADevice::write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer)
BAN::ErrorOr<void> ATADevice::write_sectors_impl(uint64_t lba, uint8_t sector_count, const uint8_t* buffer)
{
TRY(m_bus->write(this, lba, sector_count, buffer));
return {};

View File

@ -0,0 +1,239 @@
#include <kernel/LockGuard.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/PageTableScope.h>
#include <kernel/Storage/DiskCache.h>
#include <kernel/Storage/StorageDevice.h>
namespace Kernel
{
DiskCache::DiskCache(StorageDevice& device)
: m_device(device)
{ }
DiskCache::~DiskCache()
{
if (m_device.sector_size() == 0)
return;
release_all_pages();
}
BAN::ErrorOr<void> DiskCache::read_sector(uint64_t sector, uint8_t* buffer)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
for (auto& cache_block : m_cache)
{
for (size_t i = 0; i < cache_block.sectors.size(); i++)
{
if (cache_block.sectors[i].sector != sector)
continue;
cache_block.read_sector(m_device, i, buffer);
return {};
}
}
// Sector was not cached so we must read it from disk
TRY(m_device.read_sectors_impl(sector, 1, buffer));
// We try to add the sector to exisiting cache block
if (!m_cache.empty())
{
auto& cache_block = m_cache.back();
for (size_t i = 0; i < m_cache.back().sectors.size(); i++)
{
if (cache_block.sectors[i].sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].sector = sector;
cache_block.sectors[i].dirty = false;
return {};
}
}
// We try to allocate new cache block for this sector
TRY(m_cache.emplace_back());
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
cache_block.paddr = paddr;
cache_block.write_sector(m_device, 0, buffer);
cache_block.sectors[0].sector = sector;
cache_block.sectors[0].dirty = false;
return {};
}
// We could not cache the sector
return {};
}
BAN::ErrorOr<void> DiskCache::write_sector(uint64_t sector, const uint8_t* buffer)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
// Try to find this sector in the cache
for (auto& cache_block : m_cache)
{
for (size_t i = 0; i < cache_block.sectors.size(); i++)
{
if (cache_block.sectors[i].sector != sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].dirty = true;
return {};
}
}
// Sector was not in the cache, we try to add it to exisiting cache block
if (!m_cache.empty())
{
auto& cache_block = m_cache.back();
for (size_t i = 0; i < m_cache.back().sectors.size(); i++)
{
if (cache_block.sectors[i].sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].sector = sector;
cache_block.sectors[i].dirty = true;
return {};
}
}
// We try to allocate new cache block
TRY(m_cache.emplace_back());
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
cache_block.paddr = paddr;
cache_block.write_sector(m_device, 0, buffer);
cache_block.sectors[0].sector = sector;
cache_block.sectors[0].dirty = true;
return {};
}
// We could not allocate cache, so we must sync it to disk
// right away
TRY(m_device.write_sectors_impl(sector, 1, buffer));
return {};
}
size_t DiskCache::release_clean_pages(size_t page_count)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
size_t released = 0;
for (size_t i = 0; i < m_cache.size() && released < page_count;)
{
bool dirty = false;
for (size_t j = 0; j < sizeof(m_cache[i].sectors) / sizeof(SectorCache); j++)
if (m_cache[i].sectors[j].dirty)
dirty = true;
if (dirty)
{
i++;
continue;
}
Heap::get().release_page(m_cache[i].paddr);
m_cache.remove(i);
released++;
}
return released;
}
size_t DiskCache::release_pages(size_t page_count)
{
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
size_t released = release_clean_pages(page_count);
if (released >= page_count)
return page_count;
// NOTE: There might not actually be page_count pages after this
// function returns. The synchronization must be done elsewhere.
LockGuard _(m_lock);
while (!m_cache.empty() && released < page_count)
{
m_cache.back().sync(m_device);
Heap::get().release_page(m_cache.back().paddr);
m_cache.pop_back();
released++;
}
return released;
}
void DiskCache::release_all_pages()
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
uint8_t* temp_buffer = (uint8_t*)kmalloc(m_device.sector_size());
ASSERT(temp_buffer);
while (!m_cache.empty())
{
auto& cache_block = m_cache.back();
cache_block.sync(m_device);
Heap::get().release_page(cache_block.paddr);
m_cache.pop_back();
}
}
void DiskCache::CacheBlock::sync(StorageDevice& device)
{
uint8_t* temp_buffer = (uint8_t*)kmalloc(device.sector_size());
ASSERT(temp_buffer);
for (size_t i = 0; i < sectors.size(); i++)
{
if (!sectors[i].dirty)
continue;
read_sector(device, i, temp_buffer);
MUST(device.write_sectors_impl(sectors[i].sector, 1, temp_buffer));
sectors[i].dirty = false;
}
kfree(temp_buffer);
}
void DiskCache::CacheBlock::read_sector(StorageDevice& device, size_t index, uint8_t* buffer)
{
ASSERT(index < sectors.size());
PageTableScope _(PageTable::current());
ASSERT(PageTable::current().is_page_free(0));
PageTable::current().map_page_at(paddr, 0, PageTable::Flags::Present);
memcpy(buffer, (void*)(index * device.sector_size()), device.sector_size());
PageTable::current().unmap_page(0);
PageTable::current().invalidate(0);
}
void DiskCache::CacheBlock::write_sector(StorageDevice& device, size_t index, const uint8_t* buffer)
{
ASSERT(index < sectors.size());
PageTableScope _(PageTable::current());
ASSERT(PageTable::current().is_page_free(0));
PageTable::current().map_page_at(paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
memcpy((void*)(index * device.sector_size()), buffer, device.sector_size());
PageTable::current().unmap_page(0);
PageTable::current().invalidate(0);
}
}

View File

@ -252,4 +252,37 @@ namespace Kernel
return sector_count * m_device.sector_size();
}
StorageDevice::~StorageDevice()
{
if (m_disk_cache)
delete m_disk_cache;
m_disk_cache = nullptr;
}
void StorageDevice::add_disk_cache()
{
ASSERT(m_disk_cache == nullptr);
m_disk_cache = new DiskCache(*this);
ASSERT(m_disk_cache);
}
BAN::ErrorOr<void> StorageDevice::read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer)
{
if (!m_disk_cache)
return read_sectors_impl(lba, sector_count, buffer);
for (uint8_t sector = 0; sector < sector_count; sector++)
TRY(m_disk_cache->read_sector(lba + sector, buffer + sector * sector_size()));
return {};
}
BAN::ErrorOr<void> StorageDevice::write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer)
{
if (!m_disk_cache)
return write_sectors_impl(lba, sector_count, buffer);
for (uint8_t sector = 0; sector < sector_count; sector++)
TRY(m_disk_cache->write_sector(lba + sector, buffer + sector * sector_size()));
return {};
}
}