Kernel: Start working on filesystem

We have a basic PATA driver (for reading) and gpt parser.
This commit is contained in:
Bananymous 2023-02-16 20:00:31 +02:00
parent 94cbacc998
commit 460fc3a29f
6 changed files with 613 additions and 3 deletions

View File

@ -32,9 +32,11 @@ BUILDDIR=$(abspath build)
KERNEL_OBJS= \
$(KERNEL_ARCH_OBJS) \
kernel/APIC.o \
kernel/ATA.o \
kernel/build_libc.o \
kernel/CPUID.o \
kernel/Debug.o \
kernel/DiskIO.o \
kernel/font.o \
kernel/Input.o \
kernel/InterruptController.o \

View File

@ -0,0 +1,58 @@
#pragma once
#include <BAN/Vector.h>
#include <kernel/DiskIO.h>
namespace Kernel
{
class ATADevice : public DiskDevice
{
public:
static ATADevice* create(uint16_t io_base, uint16_t ctl_base, uint8_t slave_bit);
virtual ~ATADevice() {}
uint16_t io_base() const { return m_io_base; }
uint16_t ctl_base() const { return m_ctl_base; }
uint8_t slave_bit() const { return m_slave_bit; }
virtual const char* type() const = 0;
protected:
ATADevice(uint16_t io_base, uint16_t ctl_base, uint8_t slave_bit)
: m_io_base(io_base)
, m_ctl_base(ctl_base)
, m_slave_bit(slave_bit)
{}
private:
const uint16_t m_io_base;
const uint16_t m_ctl_base;
const uint8_t m_slave_bit;
};
class PATADevice final : public ATADevice
{
public:
PATADevice(uint16_t io_base, uint16_t ctl_base, uint8_t slave_bit)
: ATADevice(io_base, ctl_base, slave_bit)
{}
virtual const char* type() const override { return "PATA"; }
virtual bool read(uint32_t lba, uint32_t sector_count, uint8_t* buffer) override;
protected:
virtual bool initialize() override;
private:
bool read_lba28(uint32_t lba, uint8_t sector_count, uint8_t* buffer);
bool wait_while_buzy();
bool wait_for_transfer();
void flush();
private:
bool m_lba_48 = false;
};
}

View File

@ -0,0 +1,46 @@
#pragma once
#include <BAN/Vector.h>
namespace Kernel
{
class DiskDevice
{
public:
struct Partition
{
uint8_t type_guid[16];
uint8_t guid[16];
uint64_t start_lba;
uint64_t end_lba;
uint64_t attributes;
char name[72];
};
public:
virtual ~DiskDevice() {}
virtual bool initialize() = 0;
bool initialize_partitions();
virtual bool read(uint32_t lba, uint32_t sector_count, uint8_t* buffer) = 0;
private:
BAN::Vector<Partition> m_partitions;
};
class DiskIO
{
public:
static bool initialize();
static DiskIO& get();
private:
DiskIO();
private:
BAN::Vector<DiskDevice*> m_devices;
};
}

236
kernel/kernel/ATA.cpp Normal file
View File

@ -0,0 +1,236 @@
#include <BAN/Errors.h>
#include <kernel/ATA.h>
#include <kernel/Debug.h>
#include <kernel/IO.h>
#include <kernel/kprint.h>
#include <ctype.h>
#define ATA_IO_PORT_DATA 0
#define ATA_IO_PORT_ERROR 1
#define ATA_IO_PORT_FEATURES 1
#define ATA_IO_PORT_SECTOR_COUNT 2
#define ATA_IO_PORT_LBA_LOW 3
#define ATA_IO_PORT_LBA_MID 4
#define ATA_IO_PORT_LBA_HIGH 5
#define ATA_IO_PORT_DRIVE_SELECT 6
#define ATA_IO_PORT_STATUS 7
#define ATA_IO_PORT_COMMAND 7
#define ATA_CTL_PORT_STATUS 0
#define ATA_CTL_PORT_CONTROL 0
#define ATA_CTL_PORT_ADDRESS 1
#define ATA_COMMAND_READ_SECTORS 0x20
#define ATA_COMMAND_IDENTIFY 0xEC
#define ATA_COMMAND_FLUSH 0xE7
#define ATA_STATUS_ERR (1 << 0)
#define ATA_STATUS_DRQ (1 << 3)
#define ATA_STATUS_DF (1 << 3)
#define ATA_STATUS_BSY (1 << 7)
#define ATA_DEBUG_PRINT 0
namespace Kernel
{
enum class ATADeviceType
{
UNKNOWN,
PATA,
PATAPI,
SATA,
SATAPI,
};
static void soft_reset(uint16_t ctl_base)
{
IO::outb(ctl_base + ATA_CTL_PORT_CONTROL, 0b00000110);
PIT::sleep(2);
IO::outb(ctl_base + ATA_CTL_PORT_CONTROL, 0b00000010);
PIT::sleep(2);
}
static ATADeviceType detect_device_type(uint16_t io_base, uint16_t ctl_base, uint8_t slave_bit)
{
soft_reset(ctl_base);
IO::outb(io_base + ATA_IO_PORT_DRIVE_SELECT, 0xA0 | slave_bit);
PIT::sleep(2);
uint8_t lba_mid = IO::inb(io_base + ATA_IO_PORT_LBA_MID);
uint8_t lba_high = IO::inb(io_base + ATA_IO_PORT_LBA_HIGH);
if (lba_mid == 0x00 && lba_high == 0x00)
return ATADeviceType::PATA;
if (lba_mid == 0x14 && lba_high == 0xEB)
return ATADeviceType::PATAPI;
if (lba_mid == 0x3C && lba_high == 0xC3)
return ATADeviceType::SATA;
if (lba_mid == 0x69 && lba_high == 0x96)
return ATADeviceType::SATAPI;
return ATADeviceType::UNKNOWN;
}
ATADevice* ATADevice::create(uint16_t io_base, uint16_t ctl_base, uint8_t slave_bit)
{
uint8_t status = IO::inb(io_base + ATA_IO_PORT_STATUS);
if (status == 0xFF)
return nullptr;
ATADeviceType type = detect_device_type(io_base, ctl_base, slave_bit);
if (type == ATADeviceType::UNKNOWN)
return nullptr;
ATADevice* ata_device = nullptr;
switch (type)
{
case ATADeviceType::PATA:
ata_device = new PATADevice(io_base, ctl_base, slave_bit);
break;
case ATADeviceType::PATAPI:
#if ATA_DEBUG_PRINT
dwarnln("Unsupported PATAPI device");
#endif
break;
case ATADeviceType::SATA:
#if ATA_DEBUG_PRINT
dwarnln("Unsupported SATA device");
#endif
break;
case ATADeviceType::SATAPI:
#if ATA_DEBUG_PRINT
dwarnln("Unsupported SATAPI device");
#endif
break;
case ATADeviceType::UNKNOWN:
break;
}
if (ata_device && !ata_device->initialize())
{
delete ata_device;
ata_device = nullptr;
}
return ata_device;
}
bool PATADevice::initialize()
{
IO::outb(io_base() + ATA_IO_PORT_COMMAND, ATA_COMMAND_IDENTIFY);
if (!wait_while_buzy() || !wait_for_transfer())
return false;
uint16_t response[256];
for (int i = 0; i < 256; i++)
response[i] = IO::inw(io_base() + ATA_IO_PORT_DATA);
m_lba_48 = response[83] & (1 << 10);
return true;
}
bool PATADevice::read(uint32_t lba, uint32_t sector_count, uint8_t* buffer)
{
return read_lba28(lba, sector_count, buffer);
}
bool PATADevice::read_lba28(uint32_t lba, uint8_t sector_count, uint8_t* buffer)
{
// 1. Send 0xE0 for the "master" or 0xF0 for the "slave", ORed with the highest 4 bits of the LBA to port 0x1F6:
// outb(0x1F6, 0xE0 | (slavebit << 4) | ((LBA >> 24) & 0x0F))
IO::outb(io_base() + ATA_IO_PORT_DRIVE_SELECT, 0xE0 | slave_bit() | ((lba >> 24) & 0xF));
// 2. Send a NULL byte to port 0x1F1, if you like (it is ignored and wastes lots of CPU time): outb(0x1F1, 0x00)
// 3. Send the sectorcount to port 0x1F2: outb(0x1F2, (unsigned char) count)
IO::outb(io_base() + ATA_IO_PORT_SECTOR_COUNT, sector_count);
// 4. Send the low 8 bits of the LBA to port 0x1F3: outb(0x1F3, (unsigned char) LBA))
IO::outb(io_base() + ATA_IO_PORT_LBA_LOW, lba & 0xFF);
// 5. Send the next 8 bits of the LBA to port 0x1F4: outb(0x1F4, (unsigned char)(LBA >> 8))
IO::outb(io_base() + ATA_IO_PORT_LBA_MID, (lba >> 8) & 0xFF);
// 6. Send the next 8 bits of the LBA to port 0x1F5: outb(0x1F5, (unsigned char)(LBA >> 16))
IO::outb(io_base() + ATA_IO_PORT_LBA_HIGH, (lba >> 16) & 0xFF);
// 7. Send the "READ SECTORS" command (0x20) to port 0x1F7: outb(0x1F7, 0x20)
IO::outb(io_base() + ATA_IO_PORT_COMMAND, ATA_COMMAND_READ_SECTORS);
memset(buffer, 0, sector_count * 256 * sizeof(uint16_t));
for (int i = 0; i < sector_count; i++)
{
// 8. Wait for an IRQ or poll.
if (!wait_while_buzy() || !wait_for_transfer())
return false;
// 9. Transfer 256 16-bit values, a uint16_t at a time, into your buffer from I/O port 0x1F0.
// (In assembler, REP INSW works well for this.)
for (int j = 0; j < 256; j++)
{
uint16_t word = IO::inw(io_base() + ATA_IO_PORT_DATA);
buffer[i * 512 + j * 2 + 0] = word & 0xFF;
buffer[i * 512 + j * 2 + 1] = word >> 8;
}
// 10. Then loop back to waiting for the next IRQ (or poll again -- see next note) for each successive sector.
}
return true;
}
bool PATADevice::wait_while_buzy()
{
uint64_t timeout = PIT::ms_since_boot() + 1000;
while (IO::inb(ctl_base() + ATA_CTL_PORT_STATUS) & ATA_STATUS_BSY)
{
if (PIT::ms_since_boot() > timeout)
{
#if ATA_DEBUG_PRINT
dwarnln("timeout on device 0x{3H} slave: {}", io_base(), !!slave_bit());
#endif
return false;
}
}
return true;
}
bool PATADevice::wait_for_transfer()
{
uint8_t status;
uint64_t timeout = PIT::ms_since_boot() + 1000;
while (!((status = IO::inb(ctl_base() + ATA_CTL_PORT_STATUS)) & ATA_STATUS_DRQ))
{
if (status & ATA_STATUS_ERR)
{
#if ATA_DEBUG_PRINT
dwarnln("error on device 0x{3H} slave: {}", io_base(), !!slave_bit());
#endif
return false;
}
if (status & ATA_STATUS_DF)
{
#if ATA_DEBUG_PRINT
dwarnln("drive fault on device 0x{3H} slave: {}", io_base(), !!slave_bit());
#endif
return false;
}
if (PIT::ms_since_boot() > timeout)
{
#if ATA_DEBUG_PRINT
dwarnln("timeout on device 0x{3H} slave: {}", io_base(), !!slave_bit());
#endif
return false;
}
}
return true;
}
void PATADevice::flush()
{
IO::outb(io_base() + ATA_IO_PORT_COMMAND, ATA_COMMAND_FLUSH);
wait_while_buzy();
}
}

268
kernel/kernel/DiskIO.cpp Normal file
View File

@ -0,0 +1,268 @@
#include <BAN/ScopeGuard.h>
#include <BAN/StringView.h>
#include <kernel/ATA.h>
#include <kernel/DiskIO.h>
#define ATA_DEVICE_PRIMARY 0x1F0
#define ATA_DEVICE_SECONDARY 0x170
#define ATA_DEVICE_SLAVE_BIT 0x10
namespace Kernel
{
struct GPTHeader
{
char signature[8];
uint32_t revision;
uint32_t size;
uint32_t crc32;
uint64_t my_lba;
uint64_t first_lba;
uint64_t last_lba;
uint8_t guid[16];
uint64_t partition_entry_lba;
uint32_t partition_entry_count;
uint32_t partition_entry_size;
uint32_t partition_entry_array_crc32;
};
uint32_t crc32_table[256] =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
static uint32_t crc32_checksum(const uint8_t* data, size_t count)
{
uint32_t crc32 = 0xFFFFFFFF;
for (size_t i = 0; i < count; i++)
{
uint8_t index = (crc32 ^ data[i]) & 0xFF;
crc32 = (crc32 >> 8) ^ crc32_table[index];
}
return crc32 ^ 0xFFFFFFFF;
}
template<typename T>
static T little_endian_to_host(const uint8_t* data)
{
T result = 0;
for (size_t i = 0; i < sizeof(T); i++)
result |= data[i] << (8 * i);
return result;
}
static bool is_valid_gpt_header(const GPTHeader& header)
{
if (memcmp(header.signature, "EFI PART", 8) != 0)
return false;
if (header.revision != 0x00010000)
return false;
if (header.size < 92 || header.size > 512)
return false;
if (header.my_lba != 1)
return false;
return true;
}
static bool is_valid_gpt_crc32(const GPTHeader& header, const uint8_t* lba1, const uint8_t* entry_array)
{
uint8_t lba1_copy[512];
memcpy(lba1_copy, lba1, 512);
memset(lba1_copy + 16, 0, 4);
if (header.crc32 != crc32_checksum(lba1_copy, header.size))
return false;
if (header.partition_entry_array_crc32 != crc32_checksum(entry_array, header.partition_entry_count * header.partition_entry_size))
return false;
return true;
}
static GPTHeader parse_gpt_header(const uint8_t* lba1)
{
GPTHeader header;
memset(&header, 0, sizeof(header));
memcpy(header.signature, lba1, 8);
memcpy(header.guid, lba1 + 56, 16);
header.revision = little_endian_to_host<uint32_t>(lba1 + 8);
header.size = little_endian_to_host<uint32_t>(lba1 + 12);
header.crc32 = little_endian_to_host<uint32_t>(lba1 + 16);
header.my_lba = little_endian_to_host<uint64_t>(lba1 + 24);
header.first_lba = little_endian_to_host<uint64_t>(lba1 + 40);
header.last_lba = little_endian_to_host<uint64_t>(lba1 + 48);
header.partition_entry_lba = little_endian_to_host<uint64_t>(lba1 + 72);
header.partition_entry_count = little_endian_to_host<uint32_t>(lba1 + 80);
header.partition_entry_size = little_endian_to_host<uint32_t>(lba1 + 84);
header.partition_entry_array_crc32 = little_endian_to_host<uint32_t>(lba1 + 88);
return header;
}
bool DiskDevice::initialize_partitions()
{
uint8_t lba1[512];
if (!read(1, 1, lba1))
return false;
GPTHeader header = parse_gpt_header(lba1);
if (!is_valid_gpt_header(header))
{
dprintln("invalid gpt header");
return false;
}
uint8_t* entry_array = nullptr;
{
uint32_t bytes = header.partition_entry_count * header.partition_entry_size;
uint32_t sectors = (bytes + 511) / 512;
entry_array = (uint8_t*)kmalloc(sectors * 512);
if (entry_array == nullptr)
return false;
if (!read(header.partition_entry_lba, sectors, entry_array))
{
kfree(entry_array);
return false;
}
}
if (!is_valid_gpt_crc32(header, lba1, entry_array))
{
dprintln("invalid crc3 in gpt header");
return false;
}
for (uint32_t i = 0; i < header.partition_entry_count; i++)
{
uint8_t* partition_data = entry_array + header.partition_entry_size * i;
Partition partition;
memcpy(partition.type_guid, partition_data, 16);
memcpy(partition.guid, partition_data + 16, 16);
memcpy(partition.name, partition_data + 56, 72);
partition.start_lba = little_endian_to_host<uint64_t>(partition_data + 32);
partition.end_lba = little_endian_to_host<uint64_t>(partition_data + 40);
partition.attributes = little_endian_to_host<uint64_t>(partition_data + 48);
MUST(m_partitions.push_back(partition));
}
for (const Partition& partition : m_partitions)
{
uint8_t zero[16] = {};
if (memcmp(partition.type_guid, zero, 16) == 0)
continue;
dprintln("partition:");
dprintln(" type {16H}{16H}", *(uint64_t*)partition.type_guid, *(uint64_t*)(partition.type_guid + 1));
dprintln(" guid {16H}{16H}", *(uint64_t*)partition.guid, *(uint64_t*)(partition.guid + 1));
dprintln(" start {16H}", partition.start_lba);
dprintln(" end {16H}", partition.end_lba);
dprintln(" attr {16H}", partition.attributes);
dprintln(" name {}", partition.name);
}
return true;
}
static DiskIO* s_instance = nullptr;
bool DiskIO::initialize()
{
ASSERT(s_instance == nullptr);
s_instance = new DiskIO();
return true;
}
DiskIO& DiskIO::get()
{
ASSERT(s_instance);
return *s_instance;
}
DiskIO::DiskIO()
{
auto add_ata_device = [this](uint16_t io_base, uint16_t ctl_base, uint8_t slave_bit)
{
DiskDevice* device = ATADevice::create(io_base, ctl_base, slave_bit);
if (!device)
return;
if (!device->initialize())
{
delete device;
return;
}
if (!device->initialize_partitions())
{
delete device;
return;
}
MUST(m_devices.push_back(device));
};
add_ata_device(ATA_DEVICE_PRIMARY, ATA_DEVICE_PRIMARY + 0x206, 0);
add_ata_device(ATA_DEVICE_PRIMARY, ATA_DEVICE_PRIMARY + 0x206, ATA_DEVICE_SLAVE_BIT);
add_ata_device(ATA_DEVICE_SECONDARY, ATA_DEVICE_SECONDARY + 0x206, 0);
add_ata_device(ATA_DEVICE_SECONDARY, ATA_DEVICE_SECONDARY + 0x206, ATA_DEVICE_SLAVE_BIT);
}
}

View File

@ -1,4 +1,5 @@
#include <kernel/Debug.h>
#include <kernel/DiskIO.h>
#include <kernel/IDT.h>
#include <kernel/Input.h>
#include <kernel/InterruptController.h>
@ -8,9 +9,9 @@
#include <kernel/multiboot.h>
#include <kernel/PIC.h>
#include <kernel/PIT.h>
#include <kernel/Scheduler.h>
#include <kernel/Serial.h>
#include <kernel/Shell.h>
#include <kernel/Scheduler.h>
#include <kernel/TTY.h>
#include <kernel/VesaTerminalDriver.h>
@ -19,8 +20,6 @@
extern "C" const char g_kernel_cmdline[];
using namespace BAN;
struct ParsedCommandLine
{
bool force_pic = false;
@ -98,6 +97,7 @@ extern "C" void kernel_main()
Scheduler::initialize();
Scheduler& scheduler = Scheduler::get();
scheduler.add_thread(BAN::Function<void()>([] { DiskIO::initialize(); }));
scheduler.add_thread(BAN::Function<void()>([tty1] { Shell(tty1).run(); }));
scheduler.start();
ASSERT(false);