Kernel: VESA driver has now second buffer for fast scrolling

This allows us to not read from video memory, since it was very slow

I also implemented fast path for graphics clearing and scrolling if bpp is 32
This commit is contained in:
Bananymous 2022-12-20 14:01:04 +02:00
parent 5e2680cade
commit 3f7a61a4d2
6 changed files with 155 additions and 65 deletions

View File

@ -1,9 +1,13 @@
#include <kernel/kmalloc.h>
#include <kernel/multiboot.h>
#include <kernel/panic.h>
#include <kernel/Serial.h>
#include <kernel/VESA.h>
#include "font.h"
#include <string.h>
#define MULTIBOOT_FLAGS_FRAMEBUFFER (1 << 12)
#define MULTIBOOT_FRAMEBUFFER_TYPE_GRAPHICS 1
#define MULTIBOOT_FRAMEBUFFER_TYPE_TEXT 2
@ -14,6 +18,7 @@ extern const struct bitmap_font font;
namespace VESA
{
static void* s_buffer = nullptr;
static void* s_addr = nullptr;
static uint8_t s_bpp = 0;
static uint32_t s_pitch = 0;
@ -23,11 +28,11 @@ namespace VESA
static void GraphicsPutCharAt(uint16_t ch, uint32_t x, uint32_t y, Color fg, Color bg);
static void GraphicsClear(Color color);
static void GraphicsScrollLine(uint32_t line);
static void GraphicsScroll();
static void TextPutCharAt(uint16_t ch, uint32_t x, uint32_t y, Color fg, Color bg);
static void TextClear(Color color);
static void TextScrollLine(uint32_t line);
static void TextScroll();
void PutEntryAt(uint16_t ch, uint32_t x, uint32_t y, Color fg, Color bg)
{
@ -49,14 +54,12 @@ namespace VESA
return TextClear(color);
}
void ScrollLine(uint32_t line)
void Scroll()
{
if (line == 0 || line >= s_height)
return;
if (s_mode == MULTIBOOT_FRAMEBUFFER_TYPE_GRAPHICS)
return GraphicsScrollLine(line);
return GraphicsScroll();
if (s_mode == MULTIBOOT_FRAMEBUFFER_TYPE_TEXT)
return TextScrollLine(line);
return TextScroll();
}
uint32_t GetTerminalWidth()
@ -77,7 +80,7 @@ namespace VESA
return 0;
}
bool Initialize()
bool PreInitialize()
{
if (!(s_multiboot_info->flags & MULTIBOOT_FLAGS_FRAMEBUFFER))
return false;
@ -114,6 +117,18 @@ namespace VESA
return false;
}
void Initialize()
{
if (s_mode == MULTIBOOT_FRAMEBUFFER_TYPE_GRAPHICS)
{
s_buffer = kmalloc_eternal(s_height * s_pitch);
if (s_buffer == nullptr)
kprintln("Could not allocate a buffer for VESA");
else
memcpy(s_buffer, s_addr, s_height * s_pitch);
}
}
@ -138,7 +153,26 @@ namespace VESA
0x00'FF'FF'FF,
};
static void GraphicsSetPixel(uint32_t* address, uint32_t color)
static void GraphicsSetPixel(uint32_t offset, uint32_t color)
{
uint32_t* address = (uint32_t*)((uint32_t)s_addr + offset);
if (s_buffer)
{
uint32_t* buffer = (uint32_t*)((uint32_t)s_buffer + offset);
switch (s_bpp)
{
case 24:
*buffer = (*buffer & 0xFF000000) | (color & 0x00FFFFFF);
*address = *buffer;
break;
case 32:
*buffer = color;
*address = color;
break;
}
}
else
{
switch (s_bpp)
{
@ -150,17 +184,6 @@ namespace VESA
break;
}
}
static uint32_t GraphicsGetPixel(uint32_t* address)
{
switch (s_bpp)
{
case 24:
return *address & 0x00FFFFFF;
case 32:
return *address;
}
return 0;
}
static void GraphicsPutCharAt(uint16_t ch, uint32_t x, uint32_t y, Color fg, Color bg)
@ -184,58 +207,90 @@ namespace VESA
uint32_t fx = x * font.Width;
uint32_t fy = y * font.Height;
uint32_t row_addr = (uint32_t)s_addr + (fy * s_pitch) + (fx * (s_bpp / 8));
uint32_t row_offset = (fy * s_pitch) + (fx * (s_bpp / 8));
for (uint32_t gy = 0; gy < font.Height; gy++)
{
if (fy + gy >= s_height) break;
uint32_t pixel_addr = row_addr;
uint32_t pixel_offset = row_offset;
for (uint32_t gx = 0; gx < font.Width; gx++)
{
if (fx + gx >= s_width) break;
GraphicsSetPixel((uint32_t*)pixel_addr, (glyph[gy] & (1 << (font.Width - gx - 1))) ? u32_fg : u32_bg);
pixel_addr += s_bpp / 8;
GraphicsSetPixel(pixel_offset, (glyph[gy] & (1 << (font.Width - gx - 1))) ? u32_fg : u32_bg);
pixel_offset += s_bpp / 8;
}
row_addr += s_pitch;
row_offset += s_pitch;
}
}
static void GraphicsClear(Color color)
{
uint32_t u32_color = s_graphics_colors[(uint8_t)color];
uint32_t row_addr = (uint32_t)s_addr;
if (s_bpp == 32)
{
uint32_t bytes_per_row = s_pitch / (s_bpp / 8);
for (uint32_t y = 0; y < s_height; y++)
for (uint32_t x = 0; x < s_width; x++)
((uint32_t*)s_addr)[y * bytes_per_row + x] = u32_color;
if (s_buffer)
for (uint32_t y = 0; y < s_height; y++)
for (uint32_t x = 0; x < s_width; x++)
((uint32_t*)s_buffer)[y * bytes_per_row + x] = u32_color;
return;
}
uint32_t row_offset = 0;
for (uint32_t y = 0; y < s_height; y++)
{
uint32_t pixel_addr = row_addr;
uint32_t pixel_offset = row_offset;
for (uint32_t x = 0; x < s_width; x++)
{
GraphicsSetPixel((uint32_t*)pixel_addr, u32_color);
pixel_addr += s_bpp / 8;
GraphicsSetPixel(pixel_offset, u32_color);
pixel_offset += s_bpp / 8;
}
row_addr += s_pitch;
row_offset += s_pitch;
}
}
static void GraphicsScrollLine(uint32_t line)
static void GraphicsScroll()
{
if (line >= s_height / font.Height)
if (s_bpp == 32)
{
uint32_t bytes_per_row = s_pitch / (s_bpp / 8);
for (uint32_t y = 0; y < s_height - font.Height; y++)
{
for (uint32_t x = 0; x < s_width; x++)
{
if (s_buffer)
{
((uint32_t*)s_buffer)[y * bytes_per_row + x] = ((uint32_t*)s_buffer)[(y + font.Height) * bytes_per_row + x];
((uint32_t*)s_addr )[y * bytes_per_row + x] = ((uint32_t*)s_buffer)[(y + font.Height) * bytes_per_row + x];
}
else
{
((uint32_t*)s_addr )[y * bytes_per_row + x] = ((uint32_t*)s_addr )[(y + font.Height) * bytes_per_row + x];
}
}
}
return;
uint32_t row_out = (uint32_t)s_addr + (line - 1) * font.Height * s_pitch;
uint32_t row_in = (uint32_t)s_addr + (line - 0) * font.Height * s_pitch;
for (uint32_t y = 0; y < font.Height; y++)
{
uint32_t pixel_out = row_out;
uint32_t pixel_in = row_in;
for (uint32_t x = 0; x < s_width; x++)
{
GraphicsSetPixel((uint32_t*)pixel_out, GraphicsGetPixel((uint32_t*)pixel_in));
pixel_out += s_bpp / 8;
pixel_in += s_bpp / 8;
}
row_out += s_pitch;
row_in += s_pitch;
uint32_t row_offset_out = 0;
uint32_t row_offset_in = font.Height * s_pitch;
for (uint32_t y = 0; y < s_height - 1; y++)
{
if (s_buffer)
{
memcpy((void*)((uint32_t)s_buffer + row_offset_out), (void*)((uint32_t)s_buffer + row_offset_in), s_width * s_bpp);
memcpy((void*)((uint32_t)s_addr + row_offset_out), (void*)((uint32_t)s_buffer + row_offset_in), s_width * s_bpp);
}
else
{
memcpy((void*)((uint32_t)s_addr + row_offset_out), (void*)((uint32_t)s_addr + row_offset_in), s_width * s_bpp);
}
row_offset_out += s_pitch;
row_offset_in += s_pitch;
}
}
@ -266,14 +321,17 @@ namespace VESA
TextPutCharAt(' ', x, y, Color::BRIGHT_WHITE, color);
}
static void TextScrollLine(uint32_t line)
static void TextScroll()
{
for (uint32_t y = 1; y < s_height; y++)
{
for (uint32_t x = 0; x < s_width; x++)
{
uint32_t index1 = (line - 0) * s_width + x;
uint32_t index2 = (line - 1) * s_width + x;
uint32_t index1 = (y - 0) * s_width + x;
uint32_t index2 = (y - 1) * s_width + x;
((uint16_t*)s_addr)[index2] = ((uint16_t*)s_addr)[index1];
}
}
}
}

View File

@ -325,8 +325,7 @@ namespace TTY
while (terminal_row >= terminal_height)
{
for (size_t line = 1; line < terminal_height; line++)
VESA::ScrollLine(line);
VESA::Scroll();
clear_line(terminal_height - 1);
terminal_col = 0;

View File

@ -25,10 +25,11 @@ namespace VESA
BRIGHT_WHITE = 15,
};
bool Initialize();
bool PreInitialize();
void Initialize();
void PutEntryAt(uint16_t, uint32_t, uint32_t, Color, Color);
void Clear(Color);
void ScrollLine(uint32_t line);
void Scroll();
uint32_t GetTerminalWidth();
uint32_t GetTerminalHeight();

View File

@ -5,6 +5,7 @@
void kmalloc_initialize();
void kmalloc_dump_nodes();
void* kmalloc_eternal(size_t);
void* kmalloc(size_t);
void kfree(void*);

View File

@ -52,7 +52,7 @@ extern "C" void kernel_main(multiboot_info_t* mbi, uint32_t magic)
s_multiboot_info = mbi;
if (!VESA::Initialize())
if (!VESA::PreInitialize())
{
dprintln("Could not initialize VESA");
return;
@ -61,6 +61,7 @@ extern "C" void kernel_main(multiboot_info_t* mbi, uint32_t magic)
kmalloc_initialize();
VESA::Initialize();
ParsedCommandLine cmdline;
if (mbi->flags & 0x02)

View File

@ -7,6 +7,10 @@
#define MB (1 << 20)
/*
#### KMALLOC ################
*/
struct kmalloc_node
{
uint8_t* addr = nullptr;
@ -25,6 +29,17 @@ static uint8_t* const s_kmalloc_end = s_kmalloc_base + s_kmalloc_size;
static size_t s_kmalloc_available = 0;
static size_t s_kmalloc_allocated = 0;
/*
#### KMALLOC ETERNAL ########
*/
static uint8_t* s_kmalloc_eternal_ptr = nullptr;
static uint8_t* const s_kmalloc_eternal_base = s_kmalloc_end;
static constexpr size_t s_kmalloc_eternal_size = 2 * MB;
static uint8_t* const s_kmalloc_eternal_end = s_kmalloc_eternal_base + s_kmalloc_eternal_size;
/*
#############################
*/
void kmalloc_initialize()
{
@ -39,7 +54,7 @@ void kmalloc_initialize()
if (mmmt->type == 1)
{
if (mmmt->base_addr <= (uint64_t)s_kmalloc_base && (uint64_t)s_kmalloc_end <= mmmt->base_addr + mmmt->length)
if (mmmt->base_addr <= (uint64_t)s_kmalloc_base && (uint64_t)s_kmalloc_eternal_end <= mmmt->base_addr + mmmt->length)
{
dprintln("Total usable RAM: {} MB", (float)mmmt->length / MB);
valid = true;
@ -51,7 +66,7 @@ void kmalloc_initialize()
}
if (!valid)
Kernel::panic("Kmalloc: Could not find 1 MB of memory");
Kernel::panic("Kmalloc: Could not find {} MB of memory", (double)(s_kmalloc_eternal_end - s_kmalloc_base));
s_kmalloc_node_count = 1;
s_kmalloc_node_head = (kmalloc_node*)s_kmalloc_node_base;
@ -63,6 +78,8 @@ void kmalloc_initialize()
head.addr = s_kmalloc_base;
head.size = s_kmalloc_size;
head.free = true;
s_kmalloc_eternal_ptr = s_kmalloc_eternal_base;
}
void kmalloc_dump_nodes()
@ -77,6 +94,19 @@ void kmalloc_dump_nodes()
}
}
void* kmalloc_eternal(size_t size)
{
if (s_kmalloc_eternal_ptr + size > s_kmalloc_eternal_end)
{
dprintln("\e[33mKmalloc eternal: Could not allocate {} bytes\e[0m", size);
return nullptr;
}
void* result = (void*)s_kmalloc_eternal_ptr;
s_kmalloc_eternal_ptr += size;
return result;
}
void* kmalloc(size_t size)
{
// Search for node with free memory and big enough size