Kernel: Add preliminary support for PCIe

Only segment 0 is supported, but devices can now be accessed through
mmio.

Adding more segments would require adding argument to every PCI API so
it is left for later.
This commit is contained in:
Bananymous 2024-05-25 20:50:07 +03:00
parent 3b18730af6
commit 2a4d986da5
4 changed files with 328 additions and 238 deletions

View File

@ -56,7 +56,11 @@ namespace Kernel::PCI
class Device
{
public:
Device(uint8_t, uint8_t, uint8_t);
Device() = default;
void set_location(uint8_t bus, uint8_t dev, uint8_t func);
void initialize(paddr_t pcie_paddr);
bool is_valid() const { return m_is_valid; }
uint32_t read_dword(uint8_t) const;
uint16_t read_word(uint8_t) const;
@ -103,17 +107,20 @@ namespace Kernel::PCI
void disable_pin_interrupts();
private:
const uint8_t m_bus;
const uint8_t m_dev;
const uint8_t m_func;
bool m_is_valid { false };
uint8_t m_bus { 0 };
uint8_t m_dev { 0 };
uint8_t m_func { 0 };
uint8_t m_class_code;
uint8_t m_subclass;
uint8_t m_prog_if;
vaddr_t m_mmio_config { 0 };
uint8_t m_header_type;
uint16_t m_vendor_id;
uint16_t m_device_id;
uint8_t m_class_code { 0 };
uint8_t m_subclass { 0 };
uint8_t m_prog_if { 0 };
uint8_t m_header_type { 0 };
uint16_t m_vendor_id { 0 };
uint16_t m_device_id { 0 };
uint32_t m_reserved_irqs { 0 };
uint8_t m_reserved_irq_count { 0 };
@ -131,26 +138,39 @@ namespace Kernel::PCI
static void initialize();
static PCIManager& get();
const BAN::Vector<PCI::Device>& devices() const { return m_devices; }
void initialize_devices();
static uint32_t read_config_dword(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset);
static uint16_t read_config_word(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset);
static uint8_t read_config_byte(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset);
template<typename F>
void for_each_device(F callback)
{
for (auto& bus : m_buses)
for (auto& dev : bus)
for (auto& func : dev)
if (func.is_valid())
callback(func);
};
static void write_config_dword(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint32_t value);
static void write_config_word(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint16_t value);
static void write_config_byte(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint8_t value);
uint32_t read_config_dword(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset);
uint16_t read_config_word(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset);
uint8_t read_config_byte(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset);
void write_config_dword(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint32_t value);
void write_config_word(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint16_t value);
void write_config_byte(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint8_t value);
private:
PCIManager() = default;
PCIManager() : m_bus_pcie_paddr(0) {}
void check_function(uint8_t bus, uint8_t dev, uint8_t func);
void check_device(uint8_t bus, uint8_t dev);
void check_bus(uint8_t bus);
void check_all_buses();
void initialize_devices();
void initialize_impl();
private:
BAN::Vector<PCI::Device> m_devices;
using PCIBus = BAN::Array<BAN::Array<Device, 8>, 32>;
BAN::Array<PCIBus, 256> m_buses;
BAN::Array<paddr_t, 256> m_bus_pcie_paddr;
bool m_is_pcie { false };
};
}

View File

@ -211,9 +211,9 @@ namespace Kernel::ACPI
uint64_t result = 0;
switch (access_size)
{
case 1: result = PCI::PCIManager::read_config_byte(0, device, function, offset); break;
case 2: result = PCI::PCIManager::read_config_word(0, device, function, offset); break;
case 4: result = PCI::PCIManager::read_config_dword(0, device, function, offset); break;
case 1: result = PCI::PCIManager::get().read_config_byte(0, device, function, offset); break;
case 2: result = PCI::PCIManager::get().read_config_word(0, device, function, offset); break;
case 4: result = PCI::PCIManager::get().read_config_dword(0, device, function, offset); break;
default:
AML_ERROR("FieldElement read_field (PCIConfig) with access size {}", access_size);
return {};
@ -268,9 +268,9 @@ namespace Kernel::ACPI
switch (access_size)
{
case 1: PCI::PCIManager::write_config_byte(0, device, function, offset, value); break;
case 2: PCI::PCIManager::write_config_word(0, device, function, offset, value); break;
case 4: PCI::PCIManager::write_config_dword(0, device, function, offset, value); break;
case 1: PCI::PCIManager::get().write_config_byte(0, device, function, offset, value); break;
case 2: PCI::PCIManager::get().write_config_word(0, device, function, offset, value); break;
case 4: PCI::PCIManager::get().write_config_dword(0, device, function, offset, value); break;
default:
AML_ERROR("FieldElement write_field (PCIConfig) with access size {}", access_size);
return false;

View File

@ -1,3 +1,4 @@
#include <kernel/ACPI/ACPI.h>
#include <kernel/IDT.h>
#include <kernel/IO.h>
#include <kernel/Memory/PageTable.h>
@ -43,61 +44,43 @@ namespace Kernel::PCI
uint32_t PCIManager::read_config_dword(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset)
{
ASSERT(offset % 4 == 0);
uint32_t config_addr = 0x80000000 | ((uint32_t)bus << 16) | ((uint32_t)dev << 11) | ((uint32_t)func << 8) | offset;
IO::outl(CONFIG_ADDRESS, config_addr);
return IO::inl(CONFIG_DATA);
return m_buses[bus][dev][func].read_dword(offset);
}
uint16_t PCIManager::read_config_word(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset)
{
ASSERT(offset % 2 == 0);
uint32_t dword = read_config_dword(bus, dev, func, offset & ~3);
return (dword >> ((offset & 3) * 8)) & 0xFFFF;
return m_buses[bus][dev][func].read_word(offset);
}
uint8_t PCIManager::read_config_byte(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset)
{
uint32_t dword = read_config_dword(bus, dev, func, offset & ~3);
return (dword >> ((offset & 3) * 8)) & 0xFF;
return m_buses[bus][dev][func].read_byte(offset);
}
void PCIManager::write_config_dword(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint32_t value)
{
ASSERT(offset % 4 == 0);
uint32_t config_addr = 0x80000000 | ((uint32_t)bus << 16) | ((uint32_t)dev << 11) | ((uint32_t)func << 8) | offset;
IO::outl(CONFIG_ADDRESS, config_addr);
IO::outl(CONFIG_DATA, value);
m_buses[bus][dev][func].write_dword(offset, value);
}
void PCIManager::write_config_word(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint16_t value)
{
ASSERT(offset % 2 == 0);
uint32_t byte = (offset & 3) * 8;
uint32_t temp = read_config_dword(bus, dev, func, offset & ~3);
temp &= ~(0xFFFF << byte);
temp |= (uint32_t)value << byte;
write_config_dword(bus, dev, func, offset & ~3, temp);
m_buses[bus][dev][func].write_word(offset, value);
}
void PCIManager::write_config_byte(uint8_t bus, uint8_t dev, uint8_t func, uint8_t offset, uint8_t value)
{
uint32_t byte = (offset & 3) * 8;
uint32_t temp = read_config_dword(bus, dev, func, offset & ~3);
temp &= ~(0xFF << byte);
temp |= (uint32_t)value << byte;
write_config_dword(bus, dev, func, offset & ~3, temp);
m_buses[bus][dev][func].write_byte(offset, value);
}
static uint16_t get_vendor_id(uint8_t bus, uint8_t dev, uint8_t func)
{
uint32_t dword = PCIManager::read_config_dword(bus, dev, func, 0x00);
uint32_t dword = PCIManager::get().read_config_dword(bus, dev, func, 0x00);
return dword & 0xFFFF;
}
static uint8_t get_header_type(uint8_t bus, uint8_t dev, uint8_t func)
{
uint32_t dword = PCIManager::read_config_dword(bus, dev, func, 0x0C);
uint32_t dword = PCIManager::get().read_config_dword(bus, dev, func, 0x0C);
return (dword >> 16) & 0xFF;
}
@ -106,8 +89,45 @@ namespace Kernel::PCI
ASSERT(s_instance == nullptr);
s_instance = new PCIManager();
ASSERT(s_instance);
s_instance->initialize_impl();
}
void PCIManager::initialize_impl()
{
struct BAAS
{
uint64_t addr;
uint16_t segment;
uint8_t bus_start;
uint8_t bus_end;
uint32_t __reserved;
};
static_assert(sizeof(BAAS) == 16);
if (auto* mcfg = ACPI::ACPI::get().get_header("MCFG", 0))
{
const size_t count = (mcfg->length - 44) / 16;
const BAAS* baas = reinterpret_cast<BAAS*>(reinterpret_cast<vaddr_t>(mcfg) + 44);
for (size_t i = 0; i < count; i++, baas++)
{
// FIXME: support all segments
if (baas->segment != 0)
continue;
for (uint64_t bus = baas->bus_start; bus <= baas->bus_end; bus++)
{
ASSERT(m_bus_pcie_paddr[bus] == 0);
m_bus_pcie_paddr[bus] = baas->addr + (bus << 20);
}
}
m_is_pcie = true;
}
for (size_t bus = 0; bus < m_buses.size(); bus++)
for (size_t dev = 0; dev < m_buses[bus].size(); dev++)
for (size_t func = 0; func < m_buses[bus][dev].size(); func++)
m_buses[bus][dev][func].set_location(bus, dev, func);
s_instance->check_all_buses();
s_instance->initialize_devices();
}
PCIManager& PCIManager::get()
@ -118,8 +138,9 @@ namespace Kernel::PCI
void PCIManager::check_function(uint8_t bus, uint8_t dev, uint8_t func)
{
MUST(m_devices.emplace_back(bus, dev, func));
auto& device = m_devices.back();
auto& device = m_buses[bus][dev][func];
const paddr_t pcie_paddr = m_is_pcie ? m_bus_pcie_paddr[bus] + (((paddr_t)dev << 15) | ((paddr_t)func << 12)) : 0;
device.initialize(pcie_paddr);
if (device.class_code() == 0x06 && device.subclass() == 0x04)
check_bus(device.read_byte(0x19));
}
@ -157,190 +178,63 @@ namespace Kernel::PCI
void PCIManager::initialize_devices()
{
for (auto& pci_device : m_devices)
{
switch (pci_device.class_code())
for_each_device(
[&](PCI::Device& pci_device)
{
case 0x01:
switch (pci_device.class_code())
{
switch (pci_device.subclass())
case 0x01:
{
case 0x01:
case 0x05:
case 0x06:
if (auto res = ATAController::create(pci_device); res.is_error())
dprintln("ATA: {}", res.error());
break;
case 0x08:
if (auto res = NVMeController::create(pci_device); res.is_error())
dprintln("NVMe: {}", res.error());
break;
default:
dprintln("unsupported storage device (pci {2H}.{2H}.{2H})", pci_device.class_code(), pci_device.subclass(), pci_device.prog_if());
break;
switch (pci_device.subclass())
{
case 0x01:
case 0x05:
case 0x06:
if (auto res = ATAController::create(pci_device); res.is_error())
dprintln("ATA: {}", res.error());
break;
case 0x08:
if (auto res = NVMeController::create(pci_device); res.is_error())
dprintln("NVMe: {}", res.error());
break;
default:
dprintln("unsupported storage device (pci {2H}.{2H}.{2H})", pci_device.class_code(), pci_device.subclass(), pci_device.prog_if());
break;
}
break;
}
break;
case 0x02:
{
if (auto res = NetworkManager::get().add_interface(pci_device); res.is_error())
dprintln("{}", res.error());
break;
}
default:
break;
}
case 0x02:
{
if (auto res = NetworkManager::get().add_interface(pci_device); res.is_error())
dprintln("{}", res.error());
break;
}
default:
break;
}
}
}
BAN::ErrorOr<BAN::UniqPtr<BarRegion>> BarRegion::create(PCI::Device& device, uint8_t bar_num)
{
if (device.header_type() != 0x00)
{
dprintln("BAR regions for non general devices are not supported");
return BAN::Error::from_errno(ENOTSUP);
}
// disable io/mem space while reading bar
uint16_t command = device.read_word(PCI_REG_COMMAND);
device.write_word(PCI_REG_COMMAND, command & ~(PCI_CMD_IO_SPACE | PCI_CMD_MEM_SPACE));
uint8_t offset = 0x10 + bar_num * 4;
uint64_t addr = device.read_dword(offset);
device.write_dword(offset, 0xFFFFFFFF);
uint32_t size = device.read_dword(offset);
size = ~size + 1;
device.write_dword(offset, addr);
// determine bar type
BarType type = BarType::INVALID;
if (addr & 1)
{
type = BarType::IO;
addr &= 0xFFFFFFFC;
}
else if ((addr & 0b110) == 0b000)
{
type = BarType::MEM;
addr &= 0xFFFFFFF0;
}
else if ((addr & 0b110) == 0b100)
{
type = BarType::MEM;
addr &= 0xFFFFFFF0;
addr |= (uint64_t)device.read_dword(offset + 4) << 32;
}
if (type == BarType::INVALID)
{
dwarnln("invalid pci device bar");
return BAN::Error::from_errno(EINVAL);
}
auto* region_ptr = new BarRegion(type, addr, size);
ASSERT(region_ptr);
auto region = BAN::UniqPtr<BarRegion>::adopt(region_ptr);
TRY(region->initialize());
// restore old command register and enable correct IO/MEM space
command |= (type == BarType::IO) ? PCI_CMD_IO_SPACE : PCI_CMD_MEM_SPACE;
device.write_word(PCI_REG_COMMAND, command);
#if DEBUG_PCI
dprintln("created BAR region for PCI {2H}:{2H}.{2H}",
device.bus(),
device.dev(),
device.func()
);
dprintln(" type: {}", region->type() == BarType::IO ? "IO" : "MEM");
if (region->type() == BarType::IO)
dprintln(" iobase {8H}", region->iobase());
else
}
void PCI::Device::set_location(uint8_t bus, uint8_t dev, uint8_t func)
{
m_bus = bus;
m_dev = dev;
m_func = func;
}
void PCI::Device::initialize(paddr_t pcie_paddr)
{
m_is_valid = true;
if (pcie_paddr)
{
dprintln(" paddr {}", (void*)region->paddr());
dprintln(" vaddr {}", (void*)region->vaddr());
vaddr_t vaddr = PageTable::kernel().reserve_free_page(KERNEL_OFFSET);
ASSERT(vaddr);
PageTable::kernel().map_page_at(pcie_paddr, vaddr, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
m_mmio_config = vaddr;
}
dprintln(" size {}", region->size());
#endif
return region;
}
BarRegion::BarRegion(BarType type, paddr_t paddr, size_t size)
: m_type(type)
, m_paddr(paddr)
, m_size(size)
{ }
BarRegion::~BarRegion()
{
if (m_type == BarType::MEM && m_vaddr)
PageTable::kernel().unmap_range(m_vaddr, m_size);
m_vaddr = 0;
}
BAN::ErrorOr<void> BarRegion::initialize()
{
if (m_type == BarType::IO)
return {};
size_t needed_pages = BAN::Math::div_round_up<size_t>(m_size, PAGE_SIZE);
m_vaddr = PageTable::kernel().reserve_free_contiguous_pages(needed_pages, KERNEL_OFFSET);
if (m_vaddr == 0)
return BAN::Error::from_errno(ENOMEM);
PageTable::kernel().map_range_at(m_paddr, m_vaddr, m_size, PageTable::Flags::CacheDisable | PageTable::Flags::ReadWrite | PageTable::Flags::Present);
return {};
}
void BarRegion::write8(off_t reg, uint8_t val)
{
if (m_type == BarType::IO)
return IO::outb(m_paddr + reg, val);
MMIO::write8(m_vaddr + reg, val);
}
void BarRegion::write16(off_t reg, uint16_t val)
{
if (m_type == BarType::IO)
return IO::outw(m_paddr + reg, val);
MMIO::write16(m_vaddr + reg, val);
}
void BarRegion::write32(off_t reg, uint32_t val)
{
if (m_type == BarType::IO)
return IO::outl(m_paddr + reg, val);
MMIO::write32(m_vaddr + reg, val);
}
uint8_t BarRegion::read8(off_t reg)
{
if (m_type == BarType::IO)
return IO::inb(m_paddr + reg);
return MMIO::read8(m_vaddr + reg);
}
uint16_t BarRegion::read16(off_t reg)
{
if (m_type == BarType::IO)
return IO::inw(m_paddr + reg);
return MMIO::read16(m_vaddr + reg);
}
uint32_t BarRegion::read32(off_t reg)
{
if (m_type == BarType::IO)
return IO::inl(m_paddr + reg);
return MMIO::read32(m_vaddr + reg);
}
PCI::Device::Device(uint8_t bus, uint8_t dev, uint8_t func)
: m_bus(bus), m_dev(dev), m_func(func)
{
uint32_t type = read_word(0x0A);
m_class_code = (uint8_t)(type >> 8);
m_subclass = (uint8_t)(type);
@ -362,35 +256,61 @@ namespace Kernel::PCI
uint32_t PCI::Device::read_dword(uint8_t offset) const
{
ASSERT(offset % 4 == 0);
return PCIManager::read_config_dword(m_bus, m_dev, m_func, offset);
if (m_mmio_config)
return MMIO::read32(m_mmio_config + offset);
uint32_t config_addr = 0x80000000 | ((uint32_t)m_bus << 16) | ((uint32_t)m_dev << 11) | ((uint32_t)m_func << 8) | offset;
IO::outl(CONFIG_ADDRESS, config_addr);
return IO::inl(CONFIG_DATA);
}
uint16_t PCI::Device::read_word(uint8_t offset) const
{
ASSERT(offset % 2 == 0);
return PCIManager::read_config_word(m_bus, m_dev, m_func, offset);
if (m_mmio_config)
return MMIO::read16(m_mmio_config + offset);
uint32_t dword = read_dword(offset & ~3);
return (dword >> ((offset & 3) * 8)) & 0xFFFF;
}
uint8_t PCI::Device::read_byte(uint8_t offset) const
{
return PCIManager::read_config_byte(m_bus, m_dev, m_func, offset);
if (m_mmio_config)
return MMIO::read8(m_mmio_config + offset);
uint32_t dword = read_dword(offset & ~3);
return (dword >> ((offset & 3) * 8)) & 0xFF;
}
void PCI::Device::write_dword(uint8_t offset, uint32_t value)
{
ASSERT(offset % 4 == 0);
PCIManager::write_config_dword(m_bus, m_dev, m_func, offset, value);
if (m_mmio_config)
return MMIO::write32(m_mmio_config + offset, value);
uint32_t config_addr = 0x80000000 | ((uint32_t)m_bus << 16) | ((uint32_t)m_dev << 11) | ((uint32_t)m_func << 8) | offset;
IO::outl(CONFIG_ADDRESS, config_addr);
IO::outl(CONFIG_DATA, value);
}
void PCI::Device::write_word(uint8_t offset, uint16_t value)
{
ASSERT(offset % 2 == 0);
PCIManager::write_config_word(m_bus, m_dev, m_func, offset, value);
if (m_mmio_config)
return MMIO::write16(m_mmio_config + offset, value);
uint32_t byte = (offset & 3) * 8;
uint32_t temp = read_dword(offset & ~3);
temp &= ~(0xFFFF << byte);
temp |= (uint32_t)value << byte;
write_dword(offset & ~3, temp);
}
void PCI::Device::write_byte(uint8_t offset, uint8_t value)
{
PCIManager::write_config_byte(m_bus, m_dev, m_func, offset, value);
if (m_mmio_config)
return MMIO::write8(m_mmio_config + offset, value);
uint32_t byte = (offset & 3) * 8;
uint32_t temp = read_dword(offset & ~3);
temp &= ~(0xFF << byte);
temp |= (uint32_t)value << byte;
write_dword(offset & ~3, temp);
}
BAN::ErrorOr<BAN::UniqPtr<BarRegion>> PCI::Device::allocate_bar_region(uint8_t bar_num)
@ -619,4 +539,149 @@ namespace Kernel::PCI
set_command_bits(PCI_CMD_INTERRUPT_DISABLE);
}
BAN::ErrorOr<BAN::UniqPtr<BarRegion>> BarRegion::create(PCI::Device& device, uint8_t bar_num)
{
if (device.header_type() != 0x00)
{
dprintln("BAR regions for non general devices are not supported");
return BAN::Error::from_errno(ENOTSUP);
}
// disable io/mem space while reading bar
uint16_t command = device.read_word(PCI_REG_COMMAND);
device.write_word(PCI_REG_COMMAND, command & ~(PCI_CMD_IO_SPACE | PCI_CMD_MEM_SPACE));
uint8_t offset = 0x10 + bar_num * 4;
uint64_t addr = device.read_dword(offset);
device.write_dword(offset, 0xFFFFFFFF);
uint32_t size = device.read_dword(offset);
size = ~size + 1;
device.write_dword(offset, addr);
// determine bar type
BarType type = BarType::INVALID;
if (addr & 1)
{
type = BarType::IO;
addr &= 0xFFFFFFFC;
}
else if ((addr & 0b110) == 0b000)
{
type = BarType::MEM;
addr &= 0xFFFFFFF0;
}
else if ((addr & 0b110) == 0b100)
{
type = BarType::MEM;
addr &= 0xFFFFFFF0;
addr |= (uint64_t)device.read_dword(offset + 4) << 32;
}
if (type == BarType::INVALID)
{
dwarnln("invalid pci device bar");
return BAN::Error::from_errno(EINVAL);
}
auto* region_ptr = new BarRegion(type, addr, size);
ASSERT(region_ptr);
auto region = BAN::UniqPtr<BarRegion>::adopt(region_ptr);
TRY(region->initialize());
// restore old command register and enable correct IO/MEM space
command |= (type == BarType::IO) ? PCI_CMD_IO_SPACE : PCI_CMD_MEM_SPACE;
device.write_word(PCI_REG_COMMAND, command);
#if DEBUG_PCI
dprintln("created BAR region for PCI {2H}:{2H}.{2H}",
device.bus(),
device.dev(),
device.func()
);
dprintln(" type: {}", region->type() == BarType::IO ? "IO" : "MEM");
if (region->type() == BarType::IO)
dprintln(" iobase {8H}", region->iobase());
else
{
dprintln(" paddr {}", (void*)region->paddr());
dprintln(" vaddr {}", (void*)region->vaddr());
}
dprintln(" size {}", region->size());
#endif
return region;
}
BarRegion::BarRegion(BarType type, paddr_t paddr, size_t size)
: m_type(type)
, m_paddr(paddr)
, m_size(size)
{ }
BarRegion::~BarRegion()
{
if (m_type == BarType::MEM && m_vaddr)
PageTable::kernel().unmap_range(m_vaddr, m_size);
m_vaddr = 0;
}
BAN::ErrorOr<void> BarRegion::initialize()
{
if (m_type == BarType::IO)
return {};
size_t needed_pages = BAN::Math::div_round_up<size_t>(m_size, PAGE_SIZE);
m_vaddr = PageTable::kernel().reserve_free_contiguous_pages(needed_pages, KERNEL_OFFSET);
if (m_vaddr == 0)
return BAN::Error::from_errno(ENOMEM);
PageTable::kernel().map_range_at(m_paddr, m_vaddr, m_size, PageTable::Flags::CacheDisable | PageTable::Flags::ReadWrite | PageTable::Flags::Present);
return {};
}
void BarRegion::write8(off_t reg, uint8_t val)
{
if (m_type == BarType::IO)
return IO::outb(m_paddr + reg, val);
MMIO::write8(m_vaddr + reg, val);
}
void BarRegion::write16(off_t reg, uint16_t val)
{
if (m_type == BarType::IO)
return IO::outw(m_paddr + reg, val);
MMIO::write16(m_vaddr + reg, val);
}
void BarRegion::write32(off_t reg, uint32_t val)
{
if (m_type == BarType::IO)
return IO::outl(m_paddr + reg, val);
MMIO::write32(m_vaddr + reg, val);
}
uint8_t BarRegion::read8(off_t reg)
{
if (m_type == BarType::IO)
return IO::inb(m_paddr + reg);
return MMIO::read8(m_vaddr + reg);
}
uint16_t BarRegion::read16(off_t reg)
{
if (m_type == BarType::IO)
return IO::inw(m_paddr + reg);
return MMIO::read16(m_vaddr + reg);
}
uint32_t BarRegion::read32(off_t reg)
{
if (m_type == BarType::IO)
return IO::inl(m_paddr + reg);
return MMIO::read32(m_vaddr + reg);
}
}

View File

@ -176,7 +176,12 @@ static void init2(void*)
auto console = MUST(DevFileSystem::get().root_inode()->find_inode(cmdline.console));
ASSERT(console->is_tty());
((TTY*)console.ptr())->set_as_current();
static_cast<Kernel::TTY*>(console.ptr())->set_as_current();
// This only initializes PCIManager by enumerating available devices and choosing PCIe/legacy
// ACPI might require PCI access during its namespace initialization
PCI::PCIManager::initialize();
dprintln("PCI initialized");
if (ACPI::ACPI::get().enter_acpi_mode(InterruptController::get().is_using_apic()).is_error())
dprintln("Failed to enter ACPI mode");
@ -197,8 +202,8 @@ static void init2(void*)
// NOTE: PCI devices are the last ones to be initialized
// so other devices can reserve predefined interrupts
PCI::PCIManager::initialize();
dprintln("PCI initialized");
PCI::PCIManager::get().initialize_devices();
dprintln("PCI devices initialized");
VirtualFileSystem::initialize(cmdline.root);
dprintln("VFS initialized");