Kernel: Implement PageTable for x86_32

This is mostly copied from x86_64 with necessary modifications
This commit is contained in:
Bananymous 2024-03-26 19:06:37 +02:00
parent 4d1f0e77f2
commit c12d1e9bd9
1 changed files with 587 additions and 101 deletions

View File

@ -1,144 +1,630 @@
#include <kernel/Memory/PageTable.h> #include <kernel/CPUID.h>
#include <kernel/Lock/SpinLock.h> #include <kernel/Lock/SpinLock.h>
#include <kernel/Memory/kmalloc.h>
#include <kernel/Memory/PageTable.h>
extern uint8_t g_kernel_start[];
extern uint8_t g_kernel_end[];
extern uint8_t g_kernel_execute_start[];
extern uint8_t g_kernel_execute_end[];
extern uint8_t g_userspace_start[];
extern uint8_t g_userspace_end[];
namespace Kernel namespace Kernel
{ {
RecursiveSpinLock PageTable::s_fast_page_lock; RecursiveSpinLock PageTable::s_fast_page_lock;
static PageTable* s_kernel = nullptr;
static bool s_has_nxe = false;
static bool s_has_pge = false;
static paddr_t s_global_pdpte = 0;
static inline PageTable::flags_t parse_flags(uint64_t entry)
{
using Flags = PageTable::Flags;
PageTable::flags_t result = 0;
if (s_has_nxe && !(entry & (1ull << 63)))
result |= Flags::Execute;
if (entry & Flags::Reserved)
result |= Flags::Reserved;
if (entry & Flags::CacheDisable)
result |= Flags::CacheDisable;
if (entry & Flags::UserSupervisor)
result |= Flags::UserSupervisor;
if (entry & Flags::ReadWrite)
result |= Flags::ReadWrite;
if (entry & Flags::Present)
result |= Flags::Present;
return result;
}
void PageTable::initialize() void PageTable::initialize()
{ {
ASSERT_NOT_REACHED(); if (CPUID::has_nxe())
} s_has_nxe = true;
PageTable& PageTable::kernel() if (CPUID::has_pge())
{ s_has_pge = true;
ASSERT_NOT_REACHED();
}
bool PageTable::is_valid_pointer(uintptr_t) ASSERT(s_kernel == nullptr);
{ s_kernel = new PageTable();
ASSERT_NOT_REACHED(); ASSERT(s_kernel);
}
BAN::ErrorOr<PageTable*> PageTable::create_userspace() s_kernel->initialize_kernel();
{ s_kernel->initial_load();
ASSERT_NOT_REACHED();
}
PageTable::~PageTable()
{
ASSERT_NOT_REACHED();
}
void PageTable::unmap_page(vaddr_t)
{
ASSERT_NOT_REACHED();
}
void PageTable::unmap_range(vaddr_t, size_t)
{
ASSERT_NOT_REACHED();
}
void PageTable::map_range_at(paddr_t, vaddr_t, size_t, flags_t)
{
ASSERT_NOT_REACHED();
}
void PageTable::map_page_at(paddr_t, vaddr_t, flags_t)
{
ASSERT_NOT_REACHED();
}
paddr_t PageTable::physical_address_of(vaddr_t) const
{
ASSERT_NOT_REACHED();
}
PageTable::flags_t PageTable::get_page_flags(vaddr_t) const
{
ASSERT_NOT_REACHED();
}
bool PageTable::is_page_free(vaddr_t) const
{
ASSERT_NOT_REACHED();
}
bool PageTable::is_range_free(vaddr_t, size_t) const
{
ASSERT_NOT_REACHED();
}
bool PageTable::reserve_page(vaddr_t, bool)
{
ASSERT_NOT_REACHED();
}
bool PageTable::reserve_range(vaddr_t, size_t, bool)
{
ASSERT_NOT_REACHED();
}
vaddr_t PageTable::reserve_free_page(vaddr_t, vaddr_t)
{
ASSERT_NOT_REACHED();
}
vaddr_t PageTable::reserve_free_contiguous_pages(size_t, vaddr_t, vaddr_t)
{
ASSERT_NOT_REACHED();
}
void PageTable::load()
{
ASSERT_NOT_REACHED();
} }
void PageTable::initial_load() void PageTable::initial_load()
{ {
ASSERT_NOT_REACHED(); if (s_has_nxe)
{
asm volatile(
"movl $0xC0000080, %%ecx;"
"rdmsr;"
"orl $0x800, %%eax;"
"wrmsr"
::: "eax", "ecx", "edx", "memory"
);
}
if (s_has_pge)
{
asm volatile(
"movl %%cr4, %%eax;"
"orl $0x80, %%eax;"
"movl %%eax, %%cr4;"
::: "eax"
);
}
// enable write protect
asm volatile(
"movl %%cr0, %%eax;"
"orl $0x10000, %%eax;"
"movl %%eax, %%cr0;"
::: "rax"
);
load();
} }
void PageTable::debug_dump() PageTable& PageTable::kernel()
{ {
ASSERT_NOT_REACHED(); ASSERT(s_kernel);
return *s_kernel;
} }
uint64_t PageTable::get_page_data(vaddr_t) const bool PageTable::is_valid_pointer(uintptr_t)
{ {
ASSERT_NOT_REACHED(); return true;
}
static uint64_t* allocate_zeroed_page_aligned_page()
{
void* page = kmalloc(PAGE_SIZE, PAGE_SIZE, true);
ASSERT(page);
memset(page, 0, PAGE_SIZE);
return (uint64_t*)page;
} }
void PageTable::initialize_kernel() void PageTable::initialize_kernel()
{ {
ASSERT_NOT_REACHED(); ASSERT(s_global_pdpte == 0);
} s_global_pdpte = V2P(allocate_zeroed_page_aligned_page());
void PageTable::map_kernel_memory() ASSERT(m_highest_paging_struct == 0);
{ m_highest_paging_struct = V2P(kmalloc(32, 32, true));
ASSERT_NOT_REACHED(); ASSERT(m_highest_paging_struct);
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
pdpt[0] = 0;
pdpt[1] = 0;
pdpt[2] = 0;
pdpt[3] = s_global_pdpte;
static_assert(KERNEL_OFFSET == 0xC0000000);
prepare_fast_page();
// Map main bios area below 1 MiB
map_range_at(
0x000E0000,
P2V(0x000E0000),
0x00100000 - 0x000E0000,
PageTable::Flags::Present
);
// Map (phys_kernel_start -> phys_kernel_end) to (virt_kernel_start -> virt_kernel_end)
ASSERT((vaddr_t)g_kernel_start % PAGE_SIZE == 0);
map_range_at(
V2P(g_kernel_start),
(vaddr_t)g_kernel_start,
g_kernel_end - g_kernel_start,
Flags::ReadWrite | Flags::Present
);
// Map executable kernel memory as executable
map_range_at(
V2P(g_kernel_execute_start),
(vaddr_t)g_kernel_execute_start,
g_kernel_execute_end - g_kernel_execute_start,
Flags::Execute | Flags::Present
);
// Map userspace memory
map_range_at(
V2P(g_userspace_start),
(vaddr_t)g_userspace_start,
g_userspace_end - g_userspace_start,
Flags::Execute | Flags::UserSupervisor | Flags::Present
);
} }
void PageTable::prepare_fast_page() void PageTable::prepare_fast_page()
{ {
ASSERT_NOT_REACHED(); constexpr uint64_t pdpte = (fast_page() >> 30) & 0x1FF;
constexpr uint64_t pde = (fast_page() >> 21) & 0x1FF;
constexpr uint64_t pte = (fast_page() >> 12) & 0x1FF;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
ASSERT(!(pdpt[pdpte] & Flags::Present));
pdpt[pdpte] = V2P(allocate_zeroed_page_aligned_page()) | Flags::Present;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte]) & PAGE_ADDR_MASK);
ASSERT(!(pd[pde] & Flags::Present));
pd[pde] = V2P(allocate_zeroed_page_aligned_page()) | Flags::ReadWrite | Flags::Present;
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde]) & PAGE_ADDR_MASK);
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = V2P(allocate_zeroed_page_aligned_page());
} }
void PageTable::invalidate(vaddr_t) void PageTable::map_fast_page(paddr_t paddr)
{ {
ASSERT_NOT_REACHED(); ASSERT(s_kernel);
} ASSERT(paddr);
void PageTable::map_fast_page(paddr_t) SpinLockGuard _(s_fast_page_lock);
{
ASSERT_NOT_REACHED(); constexpr uint64_t pdpte = (fast_page() >> 30) & 0x1FF;
constexpr uint64_t pde = (fast_page() >> 21) & 0x1FF;
constexpr uint64_t pte = (fast_page() >> 12) & 0x1FF;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(s_kernel->m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = paddr | Flags::ReadWrite | Flags::Present;
invalidate(fast_page());
} }
void PageTable::unmap_fast_page() void PageTable::unmap_fast_page()
{ {
ASSERT(s_kernel);
SpinLockGuard _(s_fast_page_lock);
constexpr uint64_t pdpte = (fast_page() >> 30) & 0x1FF;
constexpr uint64_t pde = (fast_page() >> 21) & 0x1FF;
constexpr uint64_t pte = (fast_page() >> 12) & 0x1FF;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(s_kernel->m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
ASSERT(pt[pte] & Flags::Present);
pt[pte] = 0;
invalidate(fast_page());
}
BAN::ErrorOr<PageTable*> PageTable::create_userspace()
{
SpinLockGuard _(s_kernel->m_lock);
PageTable* page_table = new PageTable;
if (page_table == nullptr)
return BAN::Error::from_errno(ENOMEM);
page_table->map_kernel_memory();
return page_table;
}
void PageTable::map_kernel_memory()
{
ASSERT(s_kernel);
ASSERT(s_global_pdpte);
ASSERT(m_highest_paging_struct == 0);
m_highest_paging_struct = V2P(kmalloc(32, 32, true));
ASSERT(m_highest_paging_struct);
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
pdpt[0] = 0;
pdpt[1] = 0;
pdpt[2] = 0;
pdpt[3] = s_global_pdpte;
static_assert(KERNEL_OFFSET == 0xC0000000);
}
PageTable::~PageTable()
{
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
for (uint32_t pdpte = 0; pdpte < 3; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
continue;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
kfree(reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK)));
}
kfree(pd);
}
kfree(pdpt);
}
void PageTable::load()
{
SpinLockGuard _(m_lock);
ASSERT(m_highest_paging_struct < 0x100000000);
const uint32_t pdpt_lo = m_highest_paging_struct;
asm volatile("movl %0, %%cr3" :: "r"(pdpt_lo));
Processor::set_current_page_table(this);
}
void PageTable::invalidate(vaddr_t vaddr)
{
ASSERT(vaddr % PAGE_SIZE == 0);
asm volatile("invlpg (%0)" :: "r"(vaddr) : "memory");
}
void PageTable::unmap_page(vaddr_t vaddr)
{
ASSERT(vaddr);
ASSERT(vaddr % PAGE_SIZE == 0);
ASSERT(vaddr != fast_page());
if (vaddr >= KERNEL_OFFSET)
ASSERT(vaddr >= (vaddr_t)g_kernel_start);
if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel))
Kernel::panic("unmapping {8H}, kernel: {}", vaddr, this == s_kernel);
const uint64_t pdpte = (vaddr >> 30) & 0x1FF;
const uint64_t pde = (vaddr >> 21) & 0x1FF;
const uint64_t pte = (vaddr >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
if (is_page_free(vaddr))
{
dwarnln("unmapping unmapped page {8H}", vaddr);
return;
}
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
pt[pte] = 0;
invalidate(vaddr);
}
void PageTable::unmap_range(vaddr_t vaddr, size_t size)
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
unmap_page(page * PAGE_SIZE);
}
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel))
Kernel::panic("mapping {8H} to {8H}, kernel: {}", paddr, vaddr, this == s_kernel);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
ASSERT(flags & Flags::Used);
const uint64_t pdpte = (vaddr >> 30) & 0x1FF;
const uint64_t pde = (vaddr >> 21) & 0x1FF;
const uint64_t pte = (vaddr >> 12) & 0x1FF;
uint64_t extra_flags = 0;
if (s_has_pge && vaddr >= KERNEL_OFFSET) // Map kernel memory as global
extra_flags |= 1ull << 8;
if (s_has_nxe && !(flags & Flags::Execute))
extra_flags |= 1ull << 63;
if (flags & Flags::Reserved)
extra_flags |= Flags::Reserved;
if (flags & Flags::CacheDisable)
extra_flags |= Flags::CacheDisable;
// NOTE: we add present here, since it has to be available in higher level structures
flags_t uwr_flags = (flags & (Flags::UserSupervisor | Flags::ReadWrite)) | Flags::Present;
SpinLockGuard _(m_lock);
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
if (!(pdpt[pdpte] & Flags::Present))
pdpt[pdpte] = V2P(allocate_zeroed_page_aligned_page()) | Flags::Present;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
if ((pd[pde] & uwr_flags) != uwr_flags)
{
if (!(pd[pde] & Flags::Present))
pd[pde] = V2P(allocate_zeroed_page_aligned_page());
pd[pde] |= uwr_flags;
}
if (!(flags & Flags::Present))
uwr_flags &= ~Flags::Present;
uint64_t* pt = reinterpret_cast<uint64_t*>(P2V(pd[pde] & PAGE_ADDR_MASK));
pt[pte] = paddr | uwr_flags | extra_flags;
invalidate(vaddr);
}
void PageTable::map_range_at(paddr_t paddr, vaddr_t vaddr, size_t size, flags_t flags)
{
ASSERT(vaddr);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
size_t page_count = range_page_count(vaddr, size);
SpinLockGuard _(m_lock);
for (size_t page = 0; page < page_count; page++)
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags);
}
uint64_t PageTable::get_page_data(vaddr_t vaddr) const
{
ASSERT(vaddr % PAGE_SIZE == 0);
const uint64_t pdpte = (vaddr >> 30) & 0x1FF;
const uint64_t pde = (vaddr >> 21) & 0x1FF;
const uint64_t pte = (vaddr >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
uint64_t* pdpt = (uint64_t*)P2V(m_highest_paging_struct);
if (!(pdpt[pdpte] & Flags::Present))
return 0;
uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK);
if (!(pd[pde] & Flags::Present))
return 0;
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
if (!(pt[pte] & Flags::Used))
return 0;
return pt[pte];
}
PageTable::flags_t PageTable::get_page_flags(vaddr_t vaddr) const
{
return parse_flags(get_page_data(vaddr));
}
paddr_t PageTable::physical_address_of(vaddr_t vaddr) const
{
uint64_t page_data = get_page_data(vaddr);
return (page_data & PAGE_ADDR_MASK) & ~(1ull << 63);
}
bool PageTable::is_page_free(vaddr_t vaddr) const
{
ASSERT(vaddr % PAGE_SIZE == 0);
return !(get_page_flags(vaddr) & Flags::Used);
}
bool PageTable::is_range_free(vaddr_t vaddr, size_t size) const
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
if (!is_page_free(page * PAGE_SIZE))
return false;
return true;
}
bool PageTable::reserve_page(vaddr_t vaddr, bool only_free)
{
SpinLockGuard _(m_lock);
ASSERT(vaddr % PAGE_SIZE == 0);
if (only_free && !is_page_free(vaddr))
return false;
map_page_at(0, vaddr, Flags::Reserved);
return true;
}
bool PageTable::reserve_range(vaddr_t vaddr, size_t bytes, bool only_free)
{
if (size_t rem = bytes % PAGE_SIZE)
bytes += PAGE_SIZE - rem;
ASSERT(vaddr % PAGE_SIZE == 0);
SpinLockGuard _(m_lock);
if (only_free && !is_range_free(vaddr, bytes))
return false;
for (size_t offset = 0; offset < bytes; offset += PAGE_SIZE)
reserve_page(vaddr + offset);
return true;
}
vaddr_t PageTable::reserve_free_page(vaddr_t first_address, vaddr_t last_address)
{
if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_end)
first_address = (vaddr_t)g_kernel_end;
if (size_t rem = first_address % PAGE_SIZE)
first_address += PAGE_SIZE - rem;
if (size_t rem = last_address % PAGE_SIZE)
last_address -= rem;
const uint32_t s_pdpte = (first_address >> 30) & 0x1FF;
const uint32_t s_pde = (first_address >> 21) & 0x1FF;
const uint32_t s_pte = (first_address >> 12) & 0x1FF;
const uint32_t e_pdpte = (last_address >> 30) & 0x1FF;
const uint32_t e_pde = (last_address >> 21) & 0x1FF;
const uint32_t e_pte = (last_address >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
// Try to find free page that can be mapped without
// allocations (page table with unused entries)
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
for (uint32_t pdpte = s_pdpte; pdpte < 4; pdpte++)
{
if (pdpte > e_pdpte)
break;
if (!(pdpt[pdpte] & Flags::Present))
continue;
uint64_t* pd = reinterpret_cast<uint64_t*>(P2V(pdpt[pdpte] & PAGE_ADDR_MASK));
for (uint32_t pde = s_pde; pde < 512; pde++)
{
if (pdpte == e_pdpte && pde > e_pde)
break;
if (!(pd[pde] & Flags::Present))
continue;
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
for (uint32_t pte = s_pte; pte < 512; pte++)
{
if (pdpte == e_pdpte && pde == e_pde && pte >= e_pte)
break;
if (!(pt[pte] & Flags::Used))
{
vaddr_t vaddr = 0;
vaddr |= (vaddr_t)pdpte << 30;
vaddr |= (vaddr_t)pde << 21;
vaddr |= (vaddr_t)pte << 12;
ASSERT(reserve_page(vaddr));
return vaddr;
}
}
}
}
// Find any free page
for (vaddr_t vaddr = first_address; vaddr < last_address; vaddr += PAGE_SIZE)
{
if (is_page_free(vaddr))
{
ASSERT(reserve_page(vaddr));
return vaddr;
}
}
ASSERT_NOT_REACHED(); ASSERT_NOT_REACHED();
} }
vaddr_t PageTable::reserve_free_contiguous_pages(size_t page_count, vaddr_t first_address, vaddr_t last_address)
{
if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_start)
first_address = (vaddr_t)g_kernel_start;
if (size_t rem = first_address % PAGE_SIZE)
first_address += PAGE_SIZE - rem;
if (size_t rem = last_address % PAGE_SIZE)
last_address -= rem;
SpinLockGuard _(m_lock);
for (vaddr_t vaddr = first_address; vaddr < last_address;)
{
bool valid { true };
for (size_t page = 0; page < page_count; page++)
{
if (!is_page_free(vaddr + page * PAGE_SIZE))
{
vaddr += (page + 1) * PAGE_SIZE;
valid = false;
break;
}
}
if (valid)
{
ASSERT(reserve_range(vaddr, page_count * PAGE_SIZE));
return vaddr;
}
}
ASSERT_NOT_REACHED();
}
static void dump_range(vaddr_t start, vaddr_t end, PageTable::flags_t flags)
{
if (start == 0)
return;
dprintln("{}-{}: {}{}{}{}",
(void*)(start), (void*)(end - 1),
flags & PageTable::Flags::Execute ? 'x' : '-',
flags & PageTable::Flags::UserSupervisor ? 'u' : '-',
flags & PageTable::Flags::ReadWrite ? 'w' : '-',
flags & PageTable::Flags::Present ? 'r' : '-'
);
}
void PageTable::debug_dump()
{
SpinLockGuard _(m_lock);
flags_t flags = 0;
vaddr_t start = 0;
uint64_t* pdpt = reinterpret_cast<uint64_t*>(P2V(m_highest_paging_struct));
for (uint32_t pdpte = 0; pdpte < 4; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
{
dump_range(start, (pdpte << 30), flags);
start = 0;
continue;
}
uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK);
for (uint64_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
{
dump_range(start, (pdpte << 30) | (pde << 21), flags);
start = 0;
continue;
}
uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK);
for (uint64_t pte = 0; pte < 512; pte++)
{
if (parse_flags(pt[pte]) != flags)
{
dump_range(start, (pdpte << 30) | (pde << 21) | (pte << 12), flags);
start = 0;
}
if (!(pt[pte] & Flags::Used))
continue;
if (start == 0)
{
flags = parse_flags(pt[pte]);
start = (pdpte << 30) | (pde << 21) | (pte << 12);
}
}
}
}
}
} }