#include #include #include #include #include #include #include #include #define ATA_DEVICE_PRIMARY 0x1F0 #define ATA_DEVICE_SECONDARY 0x170 #define ATA_DEVICE_SLAVE_BIT 0x10 namespace Kernel { struct GPTHeader { char signature[8]; BAN::LittleEndian revision; BAN::LittleEndian size; BAN::LittleEndian crc32; BAN::LittleEndian reserved; BAN::LittleEndian my_lba; BAN::LittleEndian alternate_lba; BAN::LittleEndian first_usable_lba; BAN::LittleEndian last_usable_lba; GUID disk_guid; BAN::LittleEndian partition_entry_lba; BAN::LittleEndian partition_entry_count; BAN::LittleEndian partition_entry_size; BAN::LittleEndian partition_entry_array_crc32; }; struct PartitionEntry { GUID partition_type_guid; GUID unique_partition_guid; BAN::LittleEndian starting_lba; BAN::LittleEndian ending_lba; BAN::LittleEndian attributes; BAN::LittleEndian partition_name[36]; }; static uint32_t crc32_table[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D, }; static uint32_t crc32_checksum(const uint8_t* data, size_t count) { uint32_t crc32 = 0xFFFFFFFF; for (size_t i = 0; i < count; i++) { uint8_t index = (crc32 ^ data[i]) & 0xFF; crc32 = (crc32 >> 8) ^ crc32_table[index]; } return crc32 ^ 0xFFFFFFFF; } static bool is_valid_gpt_header(const GPTHeader& header, uint32_t sector_size) { if (memcmp(header.signature, "EFI PART", 8) != 0) return false; if (header.revision != 0x00010000) return false; if (header.size < 92 || header.size > sector_size) return false; if (header.my_lba != 1) return false; return true; } static bool is_valid_gpt_crc32(const GPTHeader& header, BAN::Vector lba1, const BAN::Vector& entry_array) { memset(lba1.data() + 16, 0, 4); if (header.crc32 != crc32_checksum(lba1.data(), header.size)) return false; if (header.partition_entry_array_crc32 != crc32_checksum(entry_array.data(), header.partition_entry_count * header.partition_entry_size)) return false; return true; } BAN::ErrorOr StorageDevice::initialize_partitions() { if (total_size() < sizeof(GPTHeader)) return BAN::Error::from_error_code(ErrorCode::Storage_GPTHeader); BAN::Vector lba1(sector_size()); TRY(read_sectors(1, 1, lba1.data())); const GPTHeader& header = *(const GPTHeader*)lba1.data(); if (!is_valid_gpt_header(header, sector_size())) return BAN::Error::from_error_code(ErrorCode::Storage_GPTHeader); uint32_t size = header.partition_entry_count * header.partition_entry_size; if (uint32_t remainder = size % sector_size()) size += sector_size() - remainder; if (total_size() < header.partition_entry_lba * sector_size() + size) return BAN::Error::from_error_code(ErrorCode::Storage_GPTHeader); BAN::Vector entry_array; TRY(entry_array.resize(size)); TRY(read_sectors(header.partition_entry_lba, size / sector_size(), entry_array.data())); if (!is_valid_gpt_crc32(header, lba1, entry_array)) return BAN::Error::from_error_code(ErrorCode::Storage_GPTHeader); for (uint32_t i = 0; i < header.partition_entry_count; i++) { const PartitionEntry& entry = *(const PartitionEntry*)(entry_array.data() + header.partition_entry_size * i); GUID zero {}; if (memcmp(&entry.partition_type_guid, &zero, sizeof(GUID)) == 0) continue; char utf8_name[36 * 4 + 1]; BAN::UTF8::from_codepoints(entry.partition_name, 36, utf8_name); Partition* partition = new Partition( *this, entry.partition_type_guid, entry.unique_partition_guid, entry.starting_lba, entry.ending_lba, entry.attributes, utf8_name, i + 1 ); ASSERT(partition != nullptr); MUST(m_partitions.push_back(partition)); } return {}; } Partition::Partition(StorageDevice& device, const GUID& type, const GUID& guid, uint64_t start, uint64_t end, uint64_t attr, const char* label, uint32_t index) : m_device(device) , m_type(type) , m_guid(guid) , m_lba_start(start) , m_lba_end(end) , m_attributes(attr) , m_index(index) , m_device_name(BAN::String::formatted("{}{}", m_device.name(), index)) { memcpy(m_label, label, sizeof(m_label)); } dev_t Partition::rdev() const { return makedev(major(m_device.rdev()), m_index); } BAN::ErrorOr Partition::read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer) { const uint32_t sectors_in_partition = m_lba_end - m_lba_start; if (lba + sector_count > sectors_in_partition) return BAN::Error::from_error_code(ErrorCode::Storage_Boundaries); TRY(m_device.read_sectors(m_lba_start + lba, sector_count, buffer)); return {}; } BAN::ErrorOr Partition::write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer) { const uint32_t sectors_in_partition = m_lba_end - m_lba_start; if (lba + sector_count > sectors_in_partition) return BAN::Error::from_error_code(ErrorCode::Storage_Boundaries); TRY(m_device.write_sectors(m_lba_start + lba, sector_count, buffer)); return {}; } BAN::ErrorOr Partition::read(size_t offset, void* buffer, size_t bytes) { if (offset % m_device.sector_size() || bytes % m_device.sector_size()) return BAN::Error::from_errno(ENOTSUP); const uint32_t sectors_in_partition = m_lba_end - m_lba_start; uint32_t lba = offset / m_device.sector_size(); uint32_t sector_count = bytes / m_device.sector_size(); if (lba == sectors_in_partition) return 0; if (lba + sector_count > sectors_in_partition) sector_count = sectors_in_partition - lba; TRY(read_sectors(lba, sector_count, (uint8_t*)buffer)); return sector_count * m_device.sector_size(); } StorageDevice::~StorageDevice() { if (m_disk_cache) delete m_disk_cache; m_disk_cache = nullptr; } void StorageDevice::add_disk_cache() { ASSERT(m_disk_cache == nullptr); m_disk_cache = new DiskCache(*this); ASSERT(m_disk_cache); } BAN::ErrorOr StorageDevice::read_sectors(uint64_t lba, uint8_t sector_count, uint8_t* buffer) { if (!m_disk_cache) return read_sectors_impl(lba, sector_count, buffer); for (uint8_t sector = 0; sector < sector_count; sector++) TRY(m_disk_cache->read_sector(lba + sector, buffer + sector * sector_size())); return {}; } BAN::ErrorOr StorageDevice::write_sectors(uint64_t lba, uint8_t sector_count, const uint8_t* buffer) { if (!m_disk_cache) return write_sectors_impl(lba, sector_count, buffer); for (uint8_t sector = 0; sector < sector_count; sector++) TRY(m_disk_cache->write_sector(lba + sector, buffer + sector * sector_size())); return {}; } }