update main #1

Merged
Sinipelto merged 240 commits from Bananymous/banan-os:main into main 2023-11-20 13:20:51 +02:00
5 changed files with 59 additions and 491 deletions
Showing only changes of commit c0a89e8951 - Show all commits

View File

@ -32,7 +32,6 @@ set(KERNEL_SOURCES
kernel/Input/PS2Keymap.cpp
kernel/InterruptController.cpp
kernel/kernel.cpp
kernel/Memory/FixedWidthAllocator.cpp
kernel/Memory/GeneralAllocator.cpp
kernel/Memory/Heap.cpp
kernel/Memory/kmalloc.cpp

View File

@ -1,64 +0,0 @@
#pragma once
#include <BAN/Errors.h>
#include <BAN/UniqPtr.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/PageTable.h>
namespace Kernel
{
class FixedWidthAllocator
{
BAN_NON_COPYABLE(FixedWidthAllocator);
BAN_NON_MOVABLE(FixedWidthAllocator);
public:
static BAN::ErrorOr<BAN::UniqPtr<FixedWidthAllocator>> create(PageTable&, uint32_t);
~FixedWidthAllocator();
BAN::ErrorOr<BAN::UniqPtr<FixedWidthAllocator>> clone(PageTable&);
vaddr_t allocate();
bool deallocate(vaddr_t);
uint32_t allocation_size() const { return m_allocation_size; }
uint32_t allocations() const { return m_allocations; }
uint32_t max_allocations() const;
private:
FixedWidthAllocator(PageTable&, uint32_t);
BAN::ErrorOr<void> initialize();
bool allocate_page_if_needed(vaddr_t, uint8_t flags);
struct node
{
node* prev { nullptr };
node* next { nullptr };
bool allocated { false };
};
vaddr_t address_of_node(const node*) const;
node* node_from_address(vaddr_t) const;
void allocate_page_for_node_if_needed(const node*);
void allocate_node(node*);
void deallocate_node(node*);
private:
static constexpr uint32_t m_min_allocation_size = 16;
PageTable& m_page_table;
const uint32_t m_allocation_size;
vaddr_t m_nodes_page { 0 };
vaddr_t m_allocated_pages { 0 };
node* m_free_list { nullptr };
node* m_used_list { nullptr };
uint32_t m_allocations { 0 };
};
}

View File

@ -6,8 +6,6 @@
#include <BAN/Vector.h>
#include <kernel/Credentials.h>
#include <kernel/FS/Inode.h>
#include <kernel/Memory/FixedWidthAllocator.h>
#include <kernel/Memory/GeneralAllocator.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/VirtualRange.h>
#include <kernel/OpenFileDescriptorSet.h>
@ -117,9 +115,6 @@ namespace Kernel
BAN::ErrorOr<long> sys_mmap(const sys_mmap_t&);
BAN::ErrorOr<long> sys_munmap(void* addr, size_t len);
BAN::ErrorOr<long> sys_alloc(size_t);
BAN::ErrorOr<long> sys_free(void*);
BAN::ErrorOr<long> sys_signal(int, void (*)(int));
BAN::ErrorOr<long> sys_raise(int signal);
static BAN::ErrorOr<long> sys_kill(pid_t pid, int signal);
@ -181,9 +176,6 @@ namespace Kernel
BAN::Vector<BAN::UniqPtr<VirtualRange>> m_private_anonymous_mappings;
BAN::Vector<BAN::UniqPtr<FixedWidthAllocator>> m_fixed_width_allocators;
BAN::UniqPtr<GeneralAllocator> m_general_allocator;
vaddr_t m_signal_handlers[_SIGMAX + 1] { };
uint64_t m_signal_pending_mask { 0 };

View File

@ -1,288 +0,0 @@
#include <kernel/Memory/FixedWidthAllocator.h>
namespace Kernel
{
BAN::ErrorOr<BAN::UniqPtr<FixedWidthAllocator>> FixedWidthAllocator::create(PageTable& page_table, uint32_t allocation_size)
{
auto* allocator_ptr = new FixedWidthAllocator(page_table, allocation_size);
if (allocator_ptr == nullptr)
return BAN::Error::from_errno(ENOMEM);
auto allocator = BAN::UniqPtr<FixedWidthAllocator>::adopt(allocator_ptr);
TRY(allocator->initialize());
return allocator;
}
FixedWidthAllocator::FixedWidthAllocator(PageTable& page_table, uint32_t allocation_size)
: m_page_table(page_table)
, m_allocation_size(BAN::Math::max(allocation_size, m_min_allocation_size))
{
ASSERT(BAN::Math::is_power_of_two(allocation_size));
}
BAN::ErrorOr<void> FixedWidthAllocator::initialize()
{
m_nodes_page = (vaddr_t)kmalloc(PAGE_SIZE);
if (!m_nodes_page)
return BAN::Error::from_errno(ENOMEM);
m_allocated_pages = (vaddr_t)kmalloc(PAGE_SIZE);
if (!m_allocated_pages)
{
kfree((void*)m_nodes_page);
m_nodes_page = 0;
return BAN::Error::from_errno(ENOMEM);
}
memset((void*)m_nodes_page, 0, PAGE_SIZE);
memset((void*)m_allocated_pages, 0, PAGE_SIZE);
node* node_table = (node*)m_nodes_page;
for (uint32_t i = 0; i < PAGE_SIZE / sizeof(node); i++)
{
node_table[i].next = &node_table[i + 1];
node_table[i].prev = &node_table[i - 1];
}
node_table[0].prev = nullptr;
node_table[PAGE_SIZE / sizeof(node) - 1].next = nullptr;
m_free_list = node_table;
m_used_list = nullptr;
return {};
}
FixedWidthAllocator::~FixedWidthAllocator()
{
if (m_nodes_page && m_allocated_pages)
{
for (uint32_t page_index = 0; page_index < PAGE_SIZE / sizeof(vaddr_t); page_index++)
{
vaddr_t page_vaddr = ((vaddr_t*)m_allocated_pages)[page_index];
if (page_vaddr == 0)
continue;
ASSERT(!m_page_table.is_page_free(page_vaddr));
Heap::get().release_page(m_page_table.physical_address_of(page_vaddr));
m_page_table.unmap_page(page_vaddr);
}
}
if (m_nodes_page)
kfree((void*)m_nodes_page);
if (m_allocated_pages)
kfree((void*)m_allocated_pages);
}
paddr_t FixedWidthAllocator::allocate()
{
if (m_free_list == nullptr)
return 0;
node* node = m_free_list;
allocate_node(node);
allocate_page_for_node_if_needed(node);
return address_of_node(node);
}
bool FixedWidthAllocator::deallocate(vaddr_t address)
{
if (address % m_allocation_size)
return false;
if (m_allocations == 0)
return false;
node* node = node_from_address(address);
if (node == nullptr)
return false;
if (!node->allocated)
{
dwarnln("deallocate called on unallocated address");
return true;
}
deallocate_node(node);
return true;
}
void FixedWidthAllocator::allocate_node(node* node)
{
ASSERT(!node->allocated);
node->allocated = true;
if (node == m_free_list)
m_free_list = node->next;
if (node->prev)
node->prev->next = node->next;
if (node->next)
node->next->prev = node->prev;
node->next = m_used_list;
node->prev = nullptr;
if (m_used_list)
m_used_list->prev = node;
m_used_list = node;
m_allocations++;
}
void FixedWidthAllocator::deallocate_node(node* node)
{
ASSERT(node->allocated);
node->allocated = false;
if (node == m_used_list)
m_used_list = node->next;
if (node->prev)
node->prev->next = node->next;
if (node->next)
node->next->prev = node->prev;
node->next = m_free_list;
node->prev = nullptr;
if (m_free_list)
m_free_list->prev = node;
m_free_list = node;
m_allocations--;
}
uint32_t FixedWidthAllocator::max_allocations() const
{
return PAGE_SIZE / sizeof(node);
}
vaddr_t FixedWidthAllocator::address_of_node(const node* node) const
{
uint32_t index = node - (struct node*)m_nodes_page;
uint32_t page_index = index / (PAGE_SIZE / m_allocation_size);
ASSERT(page_index < PAGE_SIZE / sizeof(vaddr_t));
uint32_t offset = index % (PAGE_SIZE / m_allocation_size);
vaddr_t page_begin = ((vaddr_t*)m_allocated_pages)[page_index];
ASSERT(page_begin);
return page_begin + offset * m_allocation_size;
}
FixedWidthAllocator::node* FixedWidthAllocator::node_from_address(vaddr_t address) const
{
// TODO: This probably should be optimized from O(n) preferably to O(1) but I
// don't want to think about performance now.
ASSERT(address % m_allocation_size == 0);
vaddr_t page_begin = address / PAGE_SIZE * PAGE_SIZE;
for (uint32_t page_index = 0; page_index < PAGE_SIZE / sizeof(vaddr_t); page_index++)
{
vaddr_t vaddr = ((vaddr_t*)m_allocated_pages)[page_index];
if (vaddr != page_begin)
continue;
uint32_t offset = (address - page_begin) / m_allocation_size;
node* result = (node*)m_nodes_page;
result += page_index * PAGE_SIZE / m_allocation_size;
result += offset;
ASSERT(address_of_node(result) == address);
return result;
}
return nullptr;
}
void FixedWidthAllocator::allocate_page_for_node_if_needed(const node* node)
{
uint32_t index = node - (struct node*)m_nodes_page;
uint32_t page_index = index / (PAGE_SIZE / m_allocation_size);
ASSERT(page_index < PAGE_SIZE / sizeof(vaddr_t));
vaddr_t& page_vaddr = ((vaddr_t*)m_allocated_pages)[page_index];
if (page_vaddr)
return;
paddr_t page_paddr = Heap::get().take_free_page();
ASSERT(page_paddr);
page_vaddr = m_page_table.reserve_free_page(0x300000);
ASSERT(page_vaddr);
m_page_table.map_page_at(page_paddr, page_vaddr, PageTable::Flags::UserSupervisor | PageTable::Flags::ReadWrite | PageTable::Flags::Present);
}
bool FixedWidthAllocator::allocate_page_if_needed(vaddr_t vaddr, uint8_t flags)
{
ASSERT(vaddr % PAGE_SIZE == 0);
// Check if page is already allocated
for (uint32_t page_index = 0; page_index < PAGE_SIZE / sizeof(vaddr_t); page_index++)
{
vaddr_t page_begin = ((vaddr_t*)m_allocated_pages)[page_index];
if (vaddr == page_begin)
return false;
}
// Page is not allocated so the vaddr must not be in use
ASSERT(m_page_table.is_page_free(vaddr));
// Allocate the vaddr on empty page
for (uint32_t page_index = 0; page_index < PAGE_SIZE / sizeof(vaddr_t); page_index++)
{
vaddr_t& page_begin = ((vaddr_t*)m_allocated_pages)[page_index];
if (page_begin == 0)
{
paddr_t paddr = Heap::get().take_free_page();
ASSERT(paddr);
m_page_table.map_page_at(paddr, vaddr, flags);
page_begin = vaddr;
return true;
}
}
ASSERT_NOT_REACHED();
}
BAN::ErrorOr<BAN::UniqPtr<FixedWidthAllocator>> FixedWidthAllocator::clone(PageTable& new_page_table)
{
auto allocator = TRY(FixedWidthAllocator::create(new_page_table, allocation_size()));
m_page_table.lock();
ASSERT(m_page_table.is_page_free(0));
for (node* node = m_used_list; node; node = node->next)
{
ASSERT(node->allocated);
vaddr_t vaddr = address_of_node(node);
vaddr_t page_begin = vaddr & PAGE_ADDR_MASK;
PageTable::flags_t flags = m_page_table.get_page_flags(page_begin);
// Allocate and copy all data from this allocation to the new one
if (allocator->allocate_page_if_needed(page_begin, flags))
{
paddr_t paddr = new_page_table.physical_address_of(page_begin);
m_page_table.map_page_at(paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
memcpy((void*)0, (void*)page_begin, PAGE_SIZE);
}
// Now that we are sure the page is allocated, we can access the node
struct node* new_node = allocator->node_from_address(vaddr);
allocator->allocate_node(new_node);
}
m_page_table.unmap_page(0);
m_page_table.unlock();
return allocator;
}
}

View File

@ -117,11 +117,27 @@ namespace Kernel
{
PageTableScope _(process->page_table());
argv = (char**)MUST(process->sys_alloc(sizeof(char**) * 2));
argv[0] = (char*)MUST(process->sys_alloc(path.size() + 1));
memcpy(argv[0], path.data(), path.size());
argv[0][path.size()] = '\0';
argv[1] = nullptr;
size_t needed_bytes = sizeof(char*) * 2 + path.size() + 1;
if (auto rem = needed_bytes % PAGE_SIZE)
needed_bytes += PAGE_SIZE - rem;
auto argv_range = MUST(VirtualRange::create_to_vaddr_range(
process->page_table(),
0x400000, KERNEL_OFFSET,
needed_bytes,
PageTable::Flags::UserSupervisor | PageTable::Flags::ReadWrite | PageTable::Flags::Present
));
argv_range->set_zero();
uintptr_t temp = argv_range->vaddr() + sizeof(char*) * 2;
argv_range->copy_from(0, (uint8_t*)&temp, sizeof(char*));
temp = 0;
argv_range->copy_from(sizeof(char*), (uint8_t*)&temp, sizeof(char*));
argv_range->copy_from(sizeof(char*) * 2, (const uint8_t*)path.data(), path.size());
MUST(process->m_mapped_ranges.push_back(BAN::move(argv_range)));
}
process->m_userspace_info.argc = 1;
@ -149,8 +165,6 @@ namespace Kernel
Process::~Process()
{
ASSERT(m_threads.empty());
ASSERT(m_fixed_width_allocators.empty());
ASSERT(!m_general_allocator);
ASSERT(m_private_anonymous_mappings.empty());
ASSERT(m_mapped_ranges.empty());
ASSERT(m_exit_status.waiting == 0);
@ -187,10 +201,6 @@ namespace Kernel
// NOTE: We must unmap ranges while the page table is still alive
m_private_anonymous_mappings.clear();
m_mapped_ranges.clear();
// NOTE: We must clear allocators while the page table is still alive
m_fixed_width_allocators.clear();
m_general_allocator.clear();
}
void Process::on_thread_exit(Thread& thread)
@ -331,16 +341,6 @@ namespace Kernel
for (auto& mapped_range : m_mapped_ranges)
MUST(mapped_ranges.push_back(TRY(mapped_range->clone(*page_table))));
BAN::Vector<BAN::UniqPtr<FixedWidthAllocator>> fixed_width_allocators;
TRY(fixed_width_allocators.reserve(m_fixed_width_allocators.size()));
for (auto& allocator : m_fixed_width_allocators)
if (allocator->allocations() > 0)
MUST(fixed_width_allocators.push_back(TRY(allocator->clone(*page_table))));
BAN::UniqPtr<GeneralAllocator> general_allocator;
if (m_general_allocator)
general_allocator = TRY(m_general_allocator->clone(*page_table));
Process* forked = create_process(m_credentials, m_pid, m_sid, m_pgrp);
forked->m_controlling_terminal = m_controlling_terminal;
forked->m_working_directory = BAN::move(working_directory);
@ -348,8 +348,6 @@ namespace Kernel
forked->m_open_file_descriptors = BAN::move(open_file_descriptors);
forked->m_private_anonymous_mappings = BAN::move(private_anonymous_mappings);
forked->m_mapped_ranges = BAN::move(mapped_ranges);
forked->m_fixed_width_allocators = BAN::move(fixed_width_allocators);
forked->m_general_allocator = BAN::move(general_allocator);
forked->m_is_userspace = m_is_userspace;
forked->m_userspace_info = m_userspace_info;
forked->m_has_called_exec = false;
@ -390,8 +388,6 @@ namespace Kernel
m_open_file_descriptors.close_cloexec();
m_fixed_width_allocators.clear();
m_general_allocator.clear();
m_private_anonymous_mappings.clear();
m_mapped_ranges.clear();
@ -409,27 +405,46 @@ namespace Kernel
ASSERT(&Process::current() == this);
// allocate memory on the new process for arguments and environment
{
LockGuard _(page_table());
m_userspace_info.argv = (char**)MUST(sys_alloc(sizeof(char**) * (str_argv.size() + 1)));
for (size_t i = 0; i < str_argv.size(); i++)
auto create_range =
[&](const auto& container) -> BAN::UniqPtr<VirtualRange>
{
m_userspace_info.argv[i] = (char*)MUST(sys_alloc(str_argv[i].size() + 1));
memcpy(m_userspace_info.argv[i], str_argv[i].data(), str_argv[i].size());
m_userspace_info.argv[i][str_argv[i].size()] = '\0';
}
m_userspace_info.argv[str_argv.size()] = nullptr;
size_t bytes = sizeof(char*);
for (auto& elem : container)
bytes += sizeof(char*) + elem.size() + 1;
m_userspace_info.envp = (char**)MUST(sys_alloc(sizeof(char**) * (str_envp.size() + 1)));
for (size_t i = 0; i < str_envp.size(); i++)
{
m_userspace_info.envp[i] = (char*)MUST(sys_alloc(str_envp[i].size() + 1));
memcpy(m_userspace_info.envp[i], str_envp[i].data(), str_envp[i].size());
m_userspace_info.envp[i][str_envp[i].size()] = '\0';
}
m_userspace_info.envp[str_envp.size()] = nullptr;
}
if (auto rem = bytes % PAGE_SIZE)
bytes += PAGE_SIZE - rem;
auto range = MUST(VirtualRange::create_to_vaddr_range(
page_table(),
0x400000, KERNEL_OFFSET,
bytes,
PageTable::Flags::UserSupervisor | PageTable::Flags::ReadWrite | PageTable::Flags::Present
));
range->set_zero();
size_t data_offset = sizeof(char*) * (container.size() + 1);
for (size_t i = 0; i < container.size(); i++)
{
uintptr_t ptr_addr = range->vaddr() + data_offset;
range->copy_from(sizeof(char*) * i, (const uint8_t*)&ptr_addr, sizeof(char*));
range->copy_from(data_offset, (const uint8_t*)container[i].data(), container[i].size());
data_offset += container[i].size() + 1;
}
uintptr_t null = 0;
range->copy_from(sizeof(char*) * container.size(), (const uint8_t*)&null, sizeof(char*));
return BAN::move(range);
};
auto argv_range = create_range(str_argv);
m_userspace_info.argv = (char**)argv_range->vaddr();
MUST(m_mapped_ranges.push_back(BAN::move(argv_range)));
auto envp_range = create_range(str_envp);
m_userspace_info.envp = (char**)envp_range->vaddr();
MUST(m_mapped_ranges.push_back(BAN::move(envp_range)));
m_userspace_info.argc = str_argv.size();
@ -829,92 +844,6 @@ namespace Kernel
return 0;
}
static constexpr size_t allocator_size_for_allocation(size_t value)
{
if (value <= 256) {
if (value <= 64)
return 64;
else
return 256;
} else {
if (value <= 1024)
return 1024;
else
return 4096;
}
}
BAN::ErrorOr<long> Process::sys_alloc(size_t bytes)
{
vaddr_t address = 0;
if (bytes <= PAGE_SIZE)
{
// Do fixed width allocation
size_t allocation_size = allocator_size_for_allocation(bytes);
ASSERT(bytes <= allocation_size);
ASSERT(allocation_size <= PAGE_SIZE);
LockGuard _(m_lock);
bool needs_new_allocator { true };
for (auto& allocator : m_fixed_width_allocators)
{
if (allocator->allocation_size() == allocation_size && allocator->allocations() < allocator->max_allocations())
{
address = allocator->allocate();
needs_new_allocator = false;
break;
}
}
if (needs_new_allocator)
{
auto allocator = TRY(FixedWidthAllocator::create(page_table(), allocation_size));
TRY(m_fixed_width_allocators.push_back(BAN::move(allocator)));
address = m_fixed_width_allocators.back()->allocate();
}
}
else
{
LockGuard _(m_lock);
if (!m_general_allocator)
m_general_allocator = TRY(GeneralAllocator::create(page_table(), 0x400000));
address = m_general_allocator->allocate(bytes);
}
if (address == 0)
return BAN::Error::from_errno(ENOMEM);
return address;
}
BAN::ErrorOr<long> Process::sys_free(void* ptr)
{
LockGuard _(m_lock);
for (size_t i = 0; i < m_fixed_width_allocators.size(); i++)
{
auto& allocator = m_fixed_width_allocators[i];
if (allocator->deallocate((vaddr_t)ptr))
{
// TODO: This might be too much. Maybe we should only
// remove allocators when we have low memory... ?
if (allocator->allocations() == 0)
m_fixed_width_allocators.remove(i);
return 0;
}
}
if (m_general_allocator && m_general_allocator->deallocate((vaddr_t)ptr))
return 0;
dwarnln("free called on pointer that was not allocated");
return BAN::Error::from_errno(EINVAL);
}
BAN::ErrorOr<long> Process::sys_termid(char* buffer) const
{
LockGuard _(m_lock);