Kernel: namespace and function renames

MMU moved to namespace kernel
Kernel::Memory::Heap moved to just Kernel
MMU::map_{page,range} renamed to identity_map_{page,range}

Add MMU::get_page_flags
This commit is contained in:
Bananymous 2023-04-28 14:45:09 +03:00
parent e48acbb03b
commit f139fc2229
12 changed files with 473 additions and 408 deletions

View File

@ -8,198 +8,221 @@
#define MMU_DEBUG_PRINT 0 #define MMU_DEBUG_PRINT 0
// bits 31-12 set // bits 31-12 set
#define PAGE_MASK 0xfffff000 #define PAGE_MASK 0xfffff000
#define PAGE_SIZE 0x00001000 #define FLAGS_MASK 0x00000fff
static MMU* s_instance = nullptr; namespace Kernel
void MMU::initialize()
{ {
ASSERT(s_instance == nullptr);
s_instance = new MMU();
ASSERT(s_instance);
s_instance->initialize_kernel();
s_instance->load();
}
MMU& MMU::get() static MMU* s_instance = nullptr;
{
ASSERT(s_instance);
return *s_instance;
}
static uint64_t* allocate_page_aligned_page() void MMU::initialize()
{
uint64_t* page = (uint64_t*)kmalloc(PAGE_SIZE, PAGE_SIZE);
ASSERT(page);
ASSERT(((uintptr_t)page % PAGE_SIZE) == 0);
memset(page, 0, PAGE_SIZE);
return page;
}
void MMU::initialize_kernel()
{
m_highest_paging_struct = (uint64_t*)kmalloc(sizeof(uint64_t) * 4, 32);
ASSERT(m_highest_paging_struct);
ASSERT(((uintptr_t)m_highest_paging_struct % 32) == 0);
// allocate all page directories
for (int i = 0; i < 4; i++)
{ {
uint64_t* page_directory = allocate_page_aligned_page(); ASSERT(s_instance == nullptr);
m_highest_paging_struct[i] = (uint64_t)page_directory | Flags::Present; s_instance = new MMU();
ASSERT(s_instance);
s_instance->initialize_kernel();
s_instance->load();
} }
// FIXME: We should just identity map until g_kernel_end MMU& MMU::get()
// create and identity map first 6 MiB
uint64_t* page_directory1 = (uint64_t*)(m_highest_paging_struct[0] & PAGE_MASK);
for (uint64_t i = 0; i < 3; i++)
{ {
uint64_t* page_table = allocate_page_aligned_page(); ASSERT(s_instance);
for (uint64_t j = 0; j < 512; j++) return *s_instance;
page_table[j] = (i << 21) | (j << 12) | Flags::ReadWrite | Flags::Present;
page_directory1[i] = (uint64_t)page_table | Flags::ReadWrite | Flags::Present;
} }
// dont map first page (0 -> 4 KiB) so that nullptr dereference static uint64_t* allocate_page_aligned_page()
// causes page fault :)
uint64_t* page_table1 = (uint64_t*)(page_directory1[0] & PAGE_MASK);
page_table1[0] = 0;
}
MMU::MMU()
{
if (s_instance == nullptr)
return;
// Here we copy the s_instances paging structs since they are
// global for every process
uint64_t* global_pdpt = s_instance->m_highest_paging_struct;
uint64_t* pdpt = (uint64_t*)kmalloc(sizeof(uint64_t) * 4, 32);
ASSERT(pdpt);
for (uint32_t pdpte = 0; pdpte < 4; pdpte++)
{ {
if (!(global_pdpt[pdpte] & Flags::Present)) uint64_t* page = (uint64_t*)kmalloc(PAGE_SIZE, PAGE_SIZE);
continue; ASSERT(page);
ASSERT(((uintptr_t)page % PAGE_SIZE) == 0);
memset(page, 0, PAGE_SIZE);
return page;
}
uint64_t* global_pd = (uint64_t*)(global_pdpt[pdpte] & PAGE_MASK); void MMU::initialize_kernel()
{
m_highest_paging_struct = (uint64_t*)kmalloc(sizeof(uint64_t) * 4, 32);
ASSERT(m_highest_paging_struct);
ASSERT(((uintptr_t)m_highest_paging_struct % 32) == 0);
uint64_t* pd = allocate_page_aligned_page(); // allocate all page directories
pdpt[pdpte] = (uint64_t)pd | (global_pdpt[pdpte] & ~PAGE_MASK); for (int i = 0; i < 4; i++)
for (uint32_t pde = 0; pde < 512; pde++)
{ {
if (!(global_pd[pde] & Flags::Present)) uint64_t* page_directory = allocate_page_aligned_page();
m_highest_paging_struct[i] = (uint64_t)page_directory | Flags::Present;
}
// FIXME: We should just identity map until g_kernel_end
// create and identity map first 6 MiB
uint64_t* page_directory1 = (uint64_t*)(m_highest_paging_struct[0] & PAGE_MASK);
for (uint64_t i = 0; i < 3; i++)
{
uint64_t* page_table = allocate_page_aligned_page();
for (uint64_t j = 0; j < 512; j++)
page_table[j] = (i << 21) | (j << 12) | Flags::ReadWrite | Flags::Present;
page_directory1[i] = (uint64_t)page_table | Flags::ReadWrite | Flags::Present;
}
// dont map first page (0 -> 4 KiB) so that nullptr dereference
// causes page fault :)
uint64_t* page_table1 = (uint64_t*)(page_directory1[0] & PAGE_MASK);
page_table1[0] = 0;
}
MMU::MMU()
{
if (s_instance == nullptr)
return;
// Here we copy the s_instances paging structs since they are
// global for every process
uint64_t* global_pdpt = s_instance->m_highest_paging_struct;
uint64_t* pdpt = (uint64_t*)kmalloc(sizeof(uint64_t) * 4, 32);
ASSERT(pdpt);
for (uint32_t pdpte = 0; pdpte < 4; pdpte++)
{
if (!(global_pdpt[pdpte] & Flags::Present))
continue; continue;
uint64_t* global_pt = (uint64_t*)(global_pd[pde] & PAGE_MASK); uint64_t* global_pd = (uint64_t*)(global_pdpt[pdpte] & PAGE_MASK);
uint64_t* pt = allocate_page_aligned_page(); uint64_t* pd = allocate_page_aligned_page();
pd[pde] = (uint64_t)pt | (global_pd[pde] & ~PAGE_MASK); pdpt[pdpte] = (uint64_t)pd | (global_pdpt[pdpte] & ~PAGE_MASK);
memcpy(pt, global_pt, PAGE_SIZE); for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(global_pd[pde] & Flags::Present))
continue;
uint64_t* global_pt = (uint64_t*)(global_pd[pde] & PAGE_MASK);
uint64_t* pt = allocate_page_aligned_page();
pd[pde] = (uint64_t)pt | (global_pd[pde] & ~PAGE_MASK);
memcpy(pt, global_pt, PAGE_SIZE);
}
} }
m_highest_paging_struct = pdpt;
} }
m_highest_paging_struct = pdpt; MMU::~MMU()
}
MMU::~MMU()
{
uint64_t* pdpt = m_highest_paging_struct;
for (uint32_t pdpte = 0; pdpte < 512; pdpte++)
{ {
if (!(pdpt[pdpte] & Flags::Present)) uint64_t* pdpt = m_highest_paging_struct;
continue; for (uint32_t pdpte = 0; pdpte < 512; pdpte++)
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{ {
if (!(pd[pde] & Flags::Present)) if (!(pdpt[pdpte] & Flags::Present))
continue; continue;
kfree((void*)(pd[pde] & PAGE_MASK)); uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
kfree((void*)(pd[pde] & PAGE_MASK));
}
kfree(pd);
} }
kfree(pd); kfree(pdpt);
} }
kfree(pdpt);
}
void MMU::load() void MMU::load()
{
asm volatile("movl %0, %%cr3" :: "r"(m_highest_paging_struct));
}
void MMU::map_page_at(paddr_t paddr, vaddr_t vaddr, uint8_t flags)
{
#if MMU_DEBUG_PRINT
dprintln("AllocatePage(0x{8H})", address);
#endif
ASSERT(flags & Flags::Present);
ASSERT(!(paddr & ~PAGE_MASK));
ASSERT(!(vaddr & ~PAGE_MASK));
uint32_t pdpte = (vaddr & 0xC0000000) >> 30;
uint32_t pde = (vaddr & 0x3FE00000) >> 21;
uint32_t pte = (vaddr & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
{ {
uint64_t* page_table = allocate_page_aligned_page(); asm volatile("movl %0, %%cr3" :: "r"(m_highest_paging_struct));
page_directory[pde] = (uint64_t)page_table; }
void MMU::map_page_at(paddr_t paddr, vaddr_t vaddr, uint8_t flags)
{
#if MMU_DEBUG_PRINT
dprintln("AllocatePage(0x{8H})", address);
#endif
ASSERT(flags & Flags::Present);
ASSERT(!(paddr & ~PAGE_MASK));
ASSERT(!(vaddr & ~PAGE_MASK));
uint32_t pdpte = (vaddr & 0xC0000000) >> 30;
uint32_t pde = (vaddr & 0x3FE00000) >> 21;
uint32_t pte = (vaddr & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
{
uint64_t* page_table = allocate_page_aligned_page();
page_directory[pde] = (uint64_t)page_table;
}
page_directory[pde] |= flags;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
page_table[pte] = paddr | flags;
}
void MMU::identity_map_page(paddr_t address, uint8_t flags)
{
address &= PAGE_MASK;
map_page_at(address, address, flags);
}
void MMU::identity_map_range(paddr_t address, ptrdiff_t size, uint8_t flags)
{
paddr_t s_page = address & PAGE_MASK;
paddr_t e_page = (address + size - 1) & PAGE_MASK;
for (paddr_t page = s_page; page <= e_page; page += PAGE_SIZE)
identity_map_page(page, flags);
}
void MMU::unmap_page(vaddr_t address)
{
#if MMU_DEBUG_PRINT
dprintln("UnAllocatePage(0x{8H})", address & PAGE_MASK);
#endif
uint32_t pdpte = (address & 0xC0000000) >> 30;
uint32_t pde = (address & 0x3FE00000) >> 21;
uint32_t pte = (address & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
return;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
if (!(page_table[pte] & Flags::Present))
return;
page_table[pte] = 0;
// TODO: Unallocate the page table if this was the only allocated page
}
void MMU::unmap_range(vaddr_t address, ptrdiff_t size)
{
uintptr_t s_page = address & PAGE_MASK;
uintptr_t e_page = (address + size - 1) & PAGE_MASK;
for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE)
unmap_page(page);
}
uint8_t MMU::get_page_flags(vaddr_t address) const
{
uint32_t pdpte = (address & 0xC0000000) >> 30;
uint32_t pde = (address & 0x3FE00000) >> 21;
uint32_t pte = (address & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
return 0;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
if (!(page_table[pte] & Flags::Present))
return 0;
return page_table[pte] & FLAGS_MASK;
} }
page_directory[pde] |= flags;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
page_table[pte] = paddr | flags;
}
void MMU::map_page(uintptr_t address, uint8_t flags)
{
address &= PAGE_MASK;
map_page_at(address, address, flags);
}
void MMU::map_range(uintptr_t address, ptrdiff_t size, uint8_t flags)
{
uintptr_t s_page = address & PAGE_MASK;
uintptr_t e_page = (address + size - 1) & PAGE_MASK;
for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE)
map_page(page, flags);
}
void MMU::unmap_page(uintptr_t address)
{
#if MMU_DEBUG_PRINT
dprintln("UnAllocatePage(0x{8H})", address & PAGE_MASK);
#endif
uint32_t pdpte = (address & 0xC0000000) >> 30;
uint32_t pde = (address & 0x3FE00000) >> 21;
uint32_t pte = (address & 0x001FF000) >> 12;
uint64_t* page_directory = (uint64_t*)(m_highest_paging_struct[pdpte] & PAGE_MASK);
if (!(page_directory[pde] & Flags::Present))
return;
uint64_t* page_table = (uint64_t*)(page_directory[pde] & PAGE_MASK);
if (!(page_table[pte] & Flags::Present))
return;
page_table[pte] = 0;
// TODO: Unallocate the page table if this was the only allocated page
}
void MMU::unmap_range(uintptr_t address, ptrdiff_t size)
{
uintptr_t s_page = address & PAGE_MASK;
uintptr_t e_page = (address + size - 1) & PAGE_MASK;
for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE)
unmap_page(page);
} }

View File

@ -2,8 +2,8 @@
#include <kernel/Memory/kmalloc.h> #include <kernel/Memory/kmalloc.h>
#include <kernel/Memory/MMU.h> #include <kernel/Memory/MMU.h>
#define PAGE_SIZE 0x1000 #define FLAGS_MASK (PAGE_SIZE - 1)
#define PAGE_MASK ~(PAGE_SIZE - 1) #define PAGE_MASK (~FLAGS_MASK)
#define CLEANUP_STRUCTURE(s) \ #define CLEANUP_STRUCTURE(s) \
for (uint64_t i = 0; i < 512; i++) \ for (uint64_t i = 0; i < 512; i++) \
@ -11,240 +11,274 @@
return; \ return; \
kfree(s) kfree(s)
static MMU* s_instance = nullptr;
void MMU::initialize()
{
ASSERT(s_instance == nullptr);
s_instance = new MMU();
ASSERT(s_instance);
s_instance->initialize_kernel();
s_instance->load();
}
MMU& MMU::get()
{
ASSERT(s_instance);
return *s_instance;
}
static uint64_t* allocate_page_aligned_page()
{
void* page = kmalloc(PAGE_SIZE, PAGE_SIZE);
ASSERT(page);
memset(page, 0, PAGE_SIZE);
return (uint64_t*)page;
}
extern uint8_t g_kernel_end[]; extern uint8_t g_kernel_end[];
void MMU::initialize_kernel() namespace Kernel
{ {
// FIXME: We should just identity map until g_kernel_end
ASSERT((uintptr_t)g_kernel_end <= 6 * (1 << 20)); static MMU* s_instance = nullptr;
// Identity map from 0 -> 6 MiB void MMU::initialize()
m_highest_paging_struct = allocate_page_aligned_page();
uint64_t* pdpt = allocate_page_aligned_page();
m_highest_paging_struct[0] = (uint64_t)pdpt | Flags::ReadWrite | Flags::Present;
uint64_t* pd = allocate_page_aligned_page();
pdpt[0] = (uint64_t)pd | Flags::ReadWrite | Flags::Present;
for (uint32_t i = 0; i < 3; i++)
{ {
uint64_t* pt = allocate_page_aligned_page(); ASSERT(s_instance == nullptr);
for (uint64_t j = 0; j < 512; j++) s_instance = new MMU();
pt[j] = (i << 21) | (j << 12) | Flags::ReadWrite | Flags::Present; ASSERT(s_instance);
pd[i] = (uint64_t)pt | Flags::ReadWrite | Flags::Present; s_instance->initialize_kernel();
s_instance->load();
} }
// Unmap 0 -> 4 KiB MMU& MMU::get()
uint64_t* pt1 = (uint64_t*)(pd[0] & PAGE_MASK);
pt1[0] = 0;
}
MMU::MMU()
{
if (s_instance == nullptr)
return;
// Here we copy the s_instances paging structs since they are
// global for every process
uint64_t* global_pml4 = s_instance->m_highest_paging_struct;
uint64_t* pml4 = allocate_page_aligned_page();
for (uint32_t pml4e = 0; pml4e < 512; pml4e++)
{ {
if (!(global_pml4[pml4e] & Flags::Present)) ASSERT(s_instance);
continue; return *s_instance;
}
uint64_t* global_pdpt = (uint64_t*)(global_pml4[pml4e] & PAGE_MASK); static uint64_t* allocate_page_aligned_page()
{
void* page = kmalloc(PAGE_SIZE, PAGE_SIZE);
ASSERT(page);
memset(page, 0, PAGE_SIZE);
return (uint64_t*)page;
}
void MMU::initialize_kernel()
{
// FIXME: We should just identity map until g_kernel_end
ASSERT((uintptr_t)g_kernel_end <= 6 * (1 << 20));
// Identity map from 0 -> 6 MiB
m_highest_paging_struct = allocate_page_aligned_page();
uint64_t* pdpt = allocate_page_aligned_page(); uint64_t* pdpt = allocate_page_aligned_page();
pml4[pml4e] = (uint64_t)pdpt | (global_pml4[pml4e] & ~PAGE_MASK); m_highest_paging_struct[0] = (uint64_t)pdpt | Flags::ReadWrite | Flags::Present;
for (uint32_t pdpte = 0; pdpte < 512; pdpte++) uint64_t* pd = allocate_page_aligned_page();
pdpt[0] = (uint64_t)pd | Flags::ReadWrite | Flags::Present;
for (uint32_t i = 0; i < 3; i++)
{ {
if (!(global_pdpt[pdpte] & Flags::Present)) uint64_t* pt = allocate_page_aligned_page();
continue; for (uint64_t j = 0; j < 512; j++)
pt[j] = (i << 21) | (j << 12) | Flags::ReadWrite | Flags::Present;
uint64_t* global_pd = (uint64_t*)(global_pdpt[pdpte] & PAGE_MASK); pd[i] = (uint64_t)pt | Flags::ReadWrite | Flags::Present;
uint64_t* pd = allocate_page_aligned_page();
pdpt[pdpte] = (uint64_t)pd | (global_pdpt[pdpte] & ~PAGE_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(global_pd[pde] & Flags::Present))
continue;
uint64_t* global_pt = (uint64_t*)(global_pd[pde] & PAGE_MASK);
uint64_t* pt = allocate_page_aligned_page();
pd[pde] = (uint64_t)pt | (global_pd[pde] & ~PAGE_MASK);
memcpy(pt, global_pt, PAGE_SIZE);
}
} }
// Unmap 0 -> 4 KiB
uint64_t* pt1 = (uint64_t*)(pd[0] & PAGE_MASK);
pt1[0] = 0;
} }
m_highest_paging_struct = pml4; MMU::MMU()
}
MMU::~MMU()
{
uint64_t* pml4 = m_highest_paging_struct;
for (uint32_t pml4e = 0; pml4e < 512; pml4e++)
{ {
if (s_instance == nullptr)
return;
// Here we copy the s_instances paging structs since they are
// global for every process
uint64_t* global_pml4 = s_instance->m_highest_paging_struct;
uint64_t* pml4 = allocate_page_aligned_page();
for (uint32_t pml4e = 0; pml4e < 512; pml4e++)
{
if (!(global_pml4[pml4e] & Flags::Present))
continue;
uint64_t* global_pdpt = (uint64_t*)(global_pml4[pml4e] & PAGE_MASK);
uint64_t* pdpt = allocate_page_aligned_page();
pml4[pml4e] = (uint64_t)pdpt | (global_pml4[pml4e] & FLAGS_MASK);
for (uint32_t pdpte = 0; pdpte < 512; pdpte++)
{
if (!(global_pdpt[pdpte] & Flags::Present))
continue;
uint64_t* global_pd = (uint64_t*)(global_pdpt[pdpte] & PAGE_MASK);
uint64_t* pd = allocate_page_aligned_page();
pdpt[pdpte] = (uint64_t)pd | (global_pdpt[pdpte] & FLAGS_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(global_pd[pde] & Flags::Present))
continue;
uint64_t* global_pt = (uint64_t*)(global_pd[pde] & PAGE_MASK);
uint64_t* pt = allocate_page_aligned_page();
pd[pde] = (uint64_t)pt | (global_pd[pde] & FLAGS_MASK);
memcpy(pt, global_pt, PAGE_SIZE);
}
}
}
m_highest_paging_struct = pml4;
}
MMU::~MMU()
{
uint64_t* pml4 = m_highest_paging_struct;
for (uint32_t pml4e = 0; pml4e < 512; pml4e++)
{
if (!(pml4[pml4e] & Flags::Present))
continue;
uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK);
for (uint32_t pdpte = 0; pdpte < 512; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
continue;
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
kfree((void*)(pd[pde] & PAGE_MASK));
}
kfree(pd);
}
kfree(pdpt);
}
kfree(pml4);
}
void MMU::load()
{
asm volatile("movq %0, %%cr3" :: "r"(m_highest_paging_struct));
}
void MMU::identity_map_page(paddr_t address, uint8_t flags)
{
address &= PAGE_MASK;
map_page_at(address, address, flags);
}
void MMU::identity_map_range(paddr_t address, ptrdiff_t size, uint8_t flags)
{
paddr_t s_page = address & PAGE_MASK;
paddr_t e_page = (address + size - 1) & PAGE_MASK;
for (paddr_t page = s_page; page <= e_page; page += PAGE_SIZE)
identity_map_page(page, flags);
}
void MMU::unmap_page(vaddr_t address)
{
ASSERT((address >> 48) == 0);
address &= PAGE_MASK;
uint64_t pml4e = (address >> 39) & 0x1FF;
uint64_t pdpte = (address >> 30) & 0x1FF;
uint64_t pde = (address >> 21) & 0x1FF;
uint64_t pte = (address >> 12) & 0x1FF;
uint64_t* pml4 = m_highest_paging_struct;
if (!(pml4[pml4e] & Flags::Present)) if (!(pml4[pml4e] & Flags::Present))
continue; return;
uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK); uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK);
for (uint32_t pdpte = 0; pdpte < 512; pdpte++) if (!(pdpt[pdpte] & Flags::Present))
return;
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
if (!(pd[pde] & Flags::Present))
return;
uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK);
if (!(pt[pte] & Flags::Present))
return;
pt[pte] = 0;
CLEANUP_STRUCTURE(pt);
pd[pde] = 0;
CLEANUP_STRUCTURE(pd);
pdpt[pdpte] = 0;
CLEANUP_STRUCTURE(pdpt);
pml4[pml4e] = 0;
}
void MMU::unmap_range(vaddr_t address, ptrdiff_t size)
{
vaddr_t s_page = address & PAGE_MASK;
vaddr_t e_page = (address + size - 1) & PAGE_MASK;
for (vaddr_t page = s_page; page <= e_page; page += PAGE_SIZE)
unmap_page(page);
}
void MMU::map_page_at(paddr_t paddr, vaddr_t vaddr, uint8_t flags)
{
ASSERT((paddr >> 48) == 0);
ASSERT((vaddr >> 48) == 0);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);;
ASSERT(flags & Flags::Present);
uint64_t pml4e = (vaddr >> 39) & 0x1FF;
uint64_t pdpte = (vaddr >> 30) & 0x1FF;
uint64_t pde = (vaddr >> 21) & 0x1FF;
uint64_t pte = (vaddr >> 12) & 0x1FF;
uint64_t* pml4 = m_highest_paging_struct;
if ((pml4[pml4e] & flags) != flags)
{
if (!(pml4[pml4e] & Flags::Present))
pml4[pml4e] = (uint64_t)allocate_page_aligned_page();
pml4[pml4e] = (pml4[pml4e] & PAGE_MASK) | flags;
}
uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK);
if ((pdpt[pdpte] & flags) != flags)
{ {
if (!(pdpt[pdpte] & Flags::Present)) if (!(pdpt[pdpte] & Flags::Present))
continue; pdpt[pdpte] = (uint64_t)allocate_page_aligned_page();
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK); pdpt[pdpte] = (pdpt[pdpte] & PAGE_MASK) | flags;
for (uint32_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
kfree((void*)(pd[pde] & PAGE_MASK));
}
kfree(pd);
} }
kfree(pdpt);
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
if ((pd[pde] & flags) != flags)
{
if (!(pd[pde] & Flags::Present))
pd[pde] = (uint64_t)allocate_page_aligned_page();
pd[pde] = (pd[pde] & PAGE_MASK) | flags;
}
uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK);
if ((pt[pte] & flags) != flags)
pt[pte] = paddr | flags;
} }
kfree(pml4);
}
void MMU::load() uint8_t MMU::get_page_flags(vaddr_t address) const
{
asm volatile("movq %0, %%cr3" :: "r"(m_highest_paging_struct));
}
void MMU::map_page(uintptr_t address, uint8_t flags)
{
address &= PAGE_MASK;
map_page_at(address, address, flags);
}
void MMU::map_range(uintptr_t address, ptrdiff_t size, uint8_t flags)
{
uintptr_t s_page = address & PAGE_MASK;
uintptr_t e_page = (address + size - 1) & PAGE_MASK;
for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE)
map_page(page, flags);
}
void MMU::unmap_page(uintptr_t address)
{
ASSERT((address >> 48) == 0);
address &= PAGE_MASK;
uint64_t pml4e = (address >> 39) & 0x1FF;
uint64_t pdpte = (address >> 30) & 0x1FF;
uint64_t pde = (address >> 21) & 0x1FF;
uint64_t pte = (address >> 12) & 0x1FF;
uint64_t* pml4 = m_highest_paging_struct;
if (!(pml4[pml4e] & Flags::Present))
return;
uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK);
if (!(pdpt[pdpte] & Flags::Present))
return;
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
if (!(pd[pde] & Flags::Present))
return;
uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK);
if (!(pt[pte] & Flags::Present))
return;
pt[pte] = 0;
CLEANUP_STRUCTURE(pt);
pd[pde] = 0;
CLEANUP_STRUCTURE(pd);
pdpt[pdpte] = 0;
CLEANUP_STRUCTURE(pdpt);
pml4[pml4e] = 0;
}
void MMU::unmap_range(uintptr_t address, ptrdiff_t size)
{
uintptr_t s_page = address & PAGE_MASK;
uintptr_t e_page = (address + size - 1) & PAGE_MASK;
for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE)
unmap_page(page);
}
void MMU::map_page_at(paddr_t paddr, vaddr_t vaddr, uint8_t flags)
{
ASSERT((paddr >> 48) == 0);
ASSERT((vaddr >> 48) == 0);
ASSERT((paddr & ~PAGE_MASK) == 0);
ASSERT((vaddr & ~PAGE_MASK) == 0);;
ASSERT(flags & Flags::Present);
uint64_t pml4e = (vaddr >> 39) & 0x1FF;
uint64_t pdpte = (vaddr >> 30) & 0x1FF;
uint64_t pde = (vaddr >> 21) & 0x1FF;
uint64_t pte = (vaddr >> 12) & 0x1FF;
uint64_t* pml4 = m_highest_paging_struct;
if ((pml4[pml4e] & flags) != flags)
{ {
ASSERT(address % PAGE_SIZE == 0);
uint64_t pml4e = (address >> 39) & 0x1FF;
uint64_t pdpte = (address >> 30) & 0x1FF;
uint64_t pde = (address >> 21) & 0x1FF;
uint64_t pte = (address >> 12) & 0x1FF;
uint64_t* pml4 = m_highest_paging_struct;
if (!(pml4[pml4e] & Flags::Present)) if (!(pml4[pml4e] & Flags::Present))
pml4[pml4e] = (uint64_t)allocate_page_aligned_page(); return 0;
pml4[pml4e] = (pml4[pml4e] & PAGE_MASK) | flags;
}
uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK); uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK);
if ((pdpt[pdpte] & flags) != flags)
{
if (!(pdpt[pdpte] & Flags::Present)) if (!(pdpt[pdpte] & Flags::Present))
pdpt[pdpte] = (uint64_t)allocate_page_aligned_page(); return 0;
pdpt[pdpte] = (pdpt[pdpte] & PAGE_MASK) | flags;
}
uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK); uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK);
if ((pd[pde] & flags) != flags)
{
if (!(pd[pde] & Flags::Present)) if (!(pd[pde] & Flags::Present))
pd[pde] = (uint64_t)allocate_page_aligned_page(); return 0;
pd[pde] = (pd[pde] & PAGE_MASK) | flags;
uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK);
if (!(pt[pte] & Flags::Present))
return 0;
return pt[pte] & FLAGS_MASK;
} }
uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK);
if ((pt[pte] & flags) != flags)
pt[pte] = paddr | flags;
} }

View File

@ -7,9 +7,10 @@
#define PAGE_SIZE 4096 #define PAGE_SIZE 4096
namespace Kernel::Memory namespace Kernel
{ {
using vaddr_t = uintptr_t;
using paddr_t = uintptr_t; using paddr_t = uintptr_t;
class PhysicalRange class PhysicalRange

View File

@ -1,41 +1,44 @@
#pragma once #pragma once
#include <stddef.h> #include <kernel/Memory/Heap.h>
#include <stdint.h>
class MMU namespace Kernel
{ {
public:
enum Flags : uint8_t class MMU
{ {
Present = 1, public:
ReadWrite = 2, enum Flags : uint8_t
UserSupervisor = 4, {
Present = 1,
ReadWrite = 2,
UserSupervisor = 4,
};
public:
static void initialize();
static MMU& get();
MMU();
~MMU();
void identity_map_page(paddr_t, uint8_t);
void identity_map_range(paddr_t, ptrdiff_t, uint8_t);
void unmap_page(vaddr_t);
void unmap_range(vaddr_t, ptrdiff_t);
void map_page_at(paddr_t, vaddr_t, uint8_t);
uint8_t get_page_flags(vaddr_t) const;
void load();
private:
void initialize_kernel();
private:
uint64_t* m_highest_paging_struct;
}; };
using vaddr_t = uintptr_t; }
using paddr_t = uintptr_t;
public:
static void initialize();
static MMU& get();
MMU();
~MMU();
void map_page(uintptr_t, uint8_t);
void map_range(uintptr_t, ptrdiff_t, uint8_t);
void unmap_page(uintptr_t);
void unmap_range(uintptr_t, ptrdiff_t);
void map_page_at(paddr_t, vaddr_t, uint8_t);
void load();
private:
void initialize_kernel();
private:
uint64_t* m_highest_paging_struct;
};

View File

@ -82,7 +82,7 @@ namespace Kernel
BAN::ErrorOr<int> get_free_fd(); BAN::ErrorOr<int> get_free_fd();
BAN::Vector<OpenFileDescription> m_open_files; BAN::Vector<OpenFileDescription> m_open_files;
BAN::Vector<Memory::paddr_t> m_allocated_pages; BAN::Vector<paddr_t> m_allocated_pages;
mutable RecursiveSpinLock m_lock; mutable RecursiveSpinLock m_lock;

View File

@ -105,7 +105,7 @@ namespace Kernel
if (rsdp->revision >= 2) if (rsdp->revision >= 2)
{ {
const XSDT* xsdt = (const XSDT*)rsdp->xsdt_address; const XSDT* xsdt = (const XSDT*)rsdp->xsdt_address;
MMU::get().map_page((uintptr_t)xsdt, MMU::Flags::Present); MMU::get().identity_map_page((uintptr_t)xsdt, MMU::Flags::Present);
BAN::ScopeGuard _([xsdt] { MMU::get().unmap_page((uintptr_t)xsdt); }); BAN::ScopeGuard _([xsdt] { MMU::get().unmap_page((uintptr_t)xsdt); });
if (memcmp(xsdt->signature, "XSDT", 4) != 0) if (memcmp(xsdt->signature, "XSDT", 4) != 0)
@ -120,7 +120,7 @@ namespace Kernel
else else
{ {
const RSDT* rsdt = (const RSDT*)(uintptr_t)rsdp->rsdt_address; const RSDT* rsdt = (const RSDT*)(uintptr_t)rsdp->rsdt_address;
MMU::get().map_page((uintptr_t)rsdt, MMU::Flags::Present); MMU::get().identity_map_page((uintptr_t)rsdt, MMU::Flags::Present);
BAN::ScopeGuard _([rsdt] { MMU::get().unmap_page((uintptr_t)rsdt); }); BAN::ScopeGuard _([rsdt] { MMU::get().unmap_page((uintptr_t)rsdt); });
if (memcmp(rsdt->signature, "RSDT", 4) != 0) if (memcmp(rsdt->signature, "RSDT", 4) != 0)
@ -133,13 +133,13 @@ namespace Kernel
m_entry_count = (rsdt->length - sizeof(SDTHeader)) / 4; m_entry_count = (rsdt->length - sizeof(SDTHeader)) / 4;
} }
MMU::get().map_range(m_header_table, m_entry_count * m_entry_size, MMU::Flags::Present); MMU::get().identity_map_range(m_header_table, m_entry_count * m_entry_size, MMU::Flags::Present);
for (uint32_t i = 0; i < m_entry_count; i++) for (uint32_t i = 0; i < m_entry_count; i++)
{ {
auto* header = get_header_from_index(i); auto* header = get_header_from_index(i);
MMU::get().map_page((uintptr_t)header, MMU::Flags::Present); MMU::get().identity_map_page((uintptr_t)header, MMU::Flags::Present);
MMU::get().map_range((uintptr_t)header, header->length, MMU::Flags::Present); MMU::get().identity_map_range((uintptr_t)header, header->length, MMU::Flags::Present);
} }
return {}; return {};

View File

@ -81,6 +81,8 @@ union RedirectionEntry
}; };
}; };
using namespace Kernel;
APIC* APIC::create() APIC* APIC::create()
{ {
uint32_t ecx, edx; uint32_t ecx, edx;
@ -144,10 +146,10 @@ APIC* APIC::create()
return nullptr; return nullptr;
} }
MMU::get().map_page(apic->m_local_apic, MMU::Flags::ReadWrite | MMU::Flags::Present); MMU::get().identity_map_page(apic->m_local_apic, MMU::Flags::ReadWrite | MMU::Flags::Present);
for (auto& io_apic : apic->m_io_apics) for (auto& io_apic : apic->m_io_apics)
{ {
MMU::get().map_page(io_apic.address, MMU::Flags::ReadWrite | MMU::Flags::Present); MMU::get().identity_map_page(io_apic.address, MMU::Flags::ReadWrite | MMU::Flags::Present);
io_apic.max_redirs = io_apic.read(IOAPIC_MAX_REDIRS); io_apic.max_redirs = io_apic.read(IOAPIC_MAX_REDIRS);
} }

View File

@ -4,7 +4,7 @@
extern uint8_t g_kernel_end[]; extern uint8_t g_kernel_end[];
namespace Kernel::Memory namespace Kernel
{ {
PhysicalRange::PhysicalRange(paddr_t start, size_t size) PhysicalRange::PhysicalRange(paddr_t start, size_t size)
@ -36,7 +36,7 @@ namespace Kernel::Memory
m_list_pages = BAN::Math::div_round_up<uint64_t>(m_total_pages * sizeof(node), PAGE_SIZE); m_list_pages = BAN::Math::div_round_up<uint64_t>(m_total_pages * sizeof(node), PAGE_SIZE);
m_reservable_pages = m_total_pages - m_list_pages; m_reservable_pages = m_total_pages - m_list_pages;
MMU::get().map_range(m_start, m_list_pages * PAGE_SIZE, MMU::Flags::ReadWrite | MMU::Flags::Present); MMU::get().identity_map_range(m_start, m_list_pages * PAGE_SIZE, MMU::Flags::ReadWrite | MMU::Flags::Present);
// Initialize page list so that every page points to the next one // Initialize page list so that every page points to the next one
node* page_list = (node*)m_start; node* page_list = (node*)m_start;

View File

@ -77,7 +77,7 @@ namespace Kernel
MUST(process->m_allocated_pages.reserve(page_end - page_start + 1)); MUST(process->m_allocated_pages.reserve(page_end - page_start + 1));
for (size_t page = page_start; page <= page_end; page++) for (size_t page = page_start; page <= page_end; page++)
{ {
auto paddr = Memory::Heap::get().take_free_page(); auto paddr = Heap::get().take_free_page();
MUST(process->m_allocated_pages.push_back(paddr)); MUST(process->m_allocated_pages.push_back(paddr));
process->m_mmu->map_page_at(paddr, page * 4096, flags); process->m_mmu->map_page_at(paddr, page * 4096, flags);
} }
@ -115,7 +115,7 @@ namespace Kernel
delete m_mmu; delete m_mmu;
} }
for (auto paddr : m_allocated_pages) for (auto paddr : m_allocated_pages)
Memory::Heap::get().release_page(paddr); Heap::get().release_page(paddr);
} }
void Process::add_thread(Thread* thread) void Process::add_thread(Thread* thread)

View File

@ -4,6 +4,8 @@
#include <kernel/multiboot.h> #include <kernel/multiboot.h>
#include <kernel/Terminal/VesaTerminalDriver.h> #include <kernel/Terminal/VesaTerminalDriver.h>
using namespace Kernel;
VesaTerminalDriver* VesaTerminalDriver::create() VesaTerminalDriver* VesaTerminalDriver::create()
{ {
if (!(g_multiboot_info->flags & MULTIBOOT_FLAGS_FRAMEBUFFER)) if (!(g_multiboot_info->flags & MULTIBOOT_FLAGS_FRAMEBUFFER))
@ -34,7 +36,7 @@ VesaTerminalDriver* VesaTerminalDriver::create()
return nullptr; return nullptr;
} }
MMU::get().map_range(framebuffer.addr, framebuffer.pitch * framebuffer.height, MMU::Flags::UserSupervisor | MMU::Flags::ReadWrite | MMU::Flags::Present); MMU::get().identity_map_range(framebuffer.addr, framebuffer.pitch * framebuffer.height, MMU::Flags::UserSupervisor | MMU::Flags::ReadWrite | MMU::Flags::Present);
auto* driver = new VesaTerminalDriver( auto* driver = new VesaTerminalDriver(
framebuffer.width, framebuffer.width,

View File

@ -44,7 +44,7 @@ namespace Kernel
delete thread; delete thread;
return BAN::Error::from_errno(ENOMEM); return BAN::Error::from_errno(ENOMEM);
} }
process->mmu().map_range(thread->stack_base(), thread->stack_size(), MMU::Flags::UserSupervisor | MMU::Flags::ReadWrite | MMU::Flags::Present); process->mmu().identity_map_range(thread->stack_base(), thread->stack_size(), MMU::Flags::UserSupervisor | MMU::Flags::ReadWrite | MMU::Flags::Present);
return thread; return thread;
} }

View File

@ -139,7 +139,7 @@ extern "C" void kernel_main()
ASSERT(tty1); ASSERT(tty1);
dprintln("TTY initialized"); dprintln("TTY initialized");
Memory::Heap::initialize(); Heap::initialize();
dprintln("Heap initialzed"); dprintln("Heap initialzed");
parse_command_line(); parse_command_line();