Kernel: Rewrite and optimize DiskCache

DiskCache now consists of PageCaches which are caches of contiguous
sectors. This allows the disk cache to be ordered and faster traversal.

We seem to have a problem somewhere during reading. The stack gets
corrupted.
This commit is contained in:
Bananymous 2023-06-19 10:31:47 +03:00
parent 4dce0f9074
commit 0d620f3e0f
2 changed files with 142 additions and 137 deletions

View File

@ -18,30 +18,28 @@ namespace Kernel
BAN::ErrorOr<void> read_sector(uint64_t sector, uint8_t* buffer);
BAN::ErrorOr<void> write_sector(uint64_t sector, const uint8_t* buffer);
void sync();
size_t release_clean_pages(size_t);
size_t release_pages(size_t);
void release_all_pages();
private:
struct SectorCache
{
uint64_t sector { 0 };
bool dirty { false };
};
struct CacheBlock
struct PageCache
{
paddr_t paddr { 0 };
BAN::Array<SectorCache, 4> sectors;
uint64_t first_sector { 0 };
uint8_t sector_mask { 0 };
uint8_t dirty_mask { 0 };
void sync(StorageDevice&);
void read_sector(StorageDevice&, size_t, uint8_t*);
void write_sector(StorageDevice&, size_t, const uint8_t*);
BAN::ErrorOr<void> read_sector(StorageDevice&, uint64_t sector, uint8_t* buffer);
BAN::ErrorOr<void> write_sector(StorageDevice&, uint64_t sector, const uint8_t* buffer);
};
private:
SpinLock m_lock;
StorageDevice& m_device;
BAN::Vector<CacheBlock> m_cache;
BAN::Vector<PageCache> m_cache;
};
}

View File

@ -13,145 +13,111 @@ namespace Kernel
DiskCache::~DiskCache()
{
if (m_device.sector_size() == 0)
return;
release_all_pages();
}
BAN::ErrorOr<void> DiskCache::read_sector(uint64_t sector, uint8_t* buffer)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
for (auto& cache_block : m_cache)
LockGuard _(m_lock);
uint64_t sectors_per_page = PAGE_SIZE / m_device.sector_size();
ASSERT(sectors_per_page <= sizeof(PageCache::sector_mask) * 8);
uint64_t page_cache_start = sector / sectors_per_page * sectors_per_page;
// Check if we already have a cache for this page
// FIXME: binary search
size_t index = 0;
for (; index < m_cache.size(); index++)
{
for (size_t i = 0; i < cache_block.sectors.size(); i++)
{
if (cache_block.sectors[i].sector != sector)
continue;
cache_block.read_sector(m_device, i, buffer);
return {};
}
if (m_cache[index].first_sector < page_cache_start)
continue;
if (m_cache[index].first_sector > page_cache_start)
break;
TRY(m_cache[index].read_sector(m_device, sector, buffer));
return {};
}
// Sector was not cached so we must read it from disk
// Try to allocate new cache
if (paddr_t paddr = Heap::get().take_free_page())
{
MUST(m_cache.insert(index, { .paddr = paddr, .first_sector = page_cache_start }));
TRY(m_cache[index].read_sector(m_device, sector, buffer));
return {};
}
// Could not allocate new cache, read from disk
TRY(m_device.read_sectors_impl(sector, 1, buffer));
// We try to add the sector to exisiting cache block
if (!m_cache.empty())
{
auto& cache_block = m_cache.back();
for (size_t i = 0; i < m_cache.back().sectors.size(); i++)
{
if (cache_block.sectors[i].sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].sector = sector;
cache_block.sectors[i].dirty = false;
return {};
}
}
// We try to allocate new cache block for this sector
if (!m_cache.emplace_back().is_error())
{
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
cache_block.paddr = paddr;
cache_block.write_sector(m_device, 0, buffer);
cache_block.sectors[0].sector = sector;
cache_block.sectors[0].dirty = false;
return {};
}
m_cache.pop_back();
}
// We could not cache the sector
return {};
}
BAN::ErrorOr<void> DiskCache::write_sector(uint64_t sector, const uint8_t* buffer)
{
ASSERT(m_device.sector_size() <= PAGE_SIZE);
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
// Try to find this sector in the cache
for (auto& cache_block : m_cache)
uint64_t sectors_per_page = PAGE_SIZE / m_device.sector_size();
ASSERT(sectors_per_page <= sizeof(PageCache::sector_mask) * 8);
uint64_t page_cache_start = sector / sectors_per_page * sectors_per_page;
// Check if we already have a cache for this page
// FIXME: binary search
size_t index = 0;
for (; index < m_cache.size(); index++)
{
for (size_t i = 0; i < cache_block.sectors.size(); i++)
{
if (cache_block.sectors[i].sector != sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].dirty = true;
return {};
}
if (m_cache[index].first_sector < page_cache_start)
continue;
if (m_cache[index].first_sector > page_cache_start)
break;
TRY(m_cache[index].write_sector(m_device, sector, buffer));
return {};
}
// Sector was not in the cache, we try to add it to exisiting cache block
if (!m_cache.empty())
// Try to allocate new cache
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
for (size_t i = 0; i < m_cache.back().sectors.size(); i++)
{
if (cache_block.sectors[i].sector)
continue;
cache_block.write_sector(m_device, i, buffer);
cache_block.sectors[i].sector = sector;
cache_block.sectors[i].dirty = true;
return {};
}
MUST(m_cache.insert(index, { .paddr = paddr, .first_sector = page_cache_start }));
TRY(m_cache[index].write_sector(m_device, sector, buffer));
return {};
}
// We try to allocate new cache block
if (!m_cache.emplace_back().is_error())
{
if (paddr_t paddr = Heap::get().take_free_page())
{
auto& cache_block = m_cache.back();
cache_block.paddr = paddr;
cache_block.write_sector(m_device, 0, buffer);
cache_block.sectors[0].sector = sector;
cache_block.sectors[0].dirty = true;
return {};
}
m_cache.pop_back();
}
// We could not allocate cache, so we must sync it to disk
// right away
// Could not allocate new cache, write to disk
TRY(m_device.write_sectors_impl(sector, 1, buffer));
return {};
}
void DiskCache::sync()
{
ASSERT(m_device.sector_size() <= PAGE_SIZE);
LockGuard _(m_lock);
for (auto& cache_block : m_cache)
cache_block.sync(m_device);
}
size_t DiskCache::release_clean_pages(size_t page_count)
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
// NOTE: There might not actually be page_count pages after this
// function returns. The synchronization must be done elsewhere.
LockGuard _(m_lock);
size_t released = 0;
for (size_t i = 0; i < m_cache.size() && released < page_count;)
{
bool dirty = false;
for (size_t j = 0; j < sizeof(m_cache[i].sectors) / sizeof(SectorCache); j++)
if (m_cache[i].sectors[j].dirty)
dirty = true;
if (dirty)
if (m_cache[i].dirty_mask == 0)
{
i++;
Heap::get().release_page(m_cache[i].paddr);
m_cache.remove(i);
released++;
continue;
}
Heap::get().release_page(m_cache[i].paddr);
m_cache.remove(i);
released++;
i++;
}
(void)m_cache.shrink_to_fit();
@ -161,12 +127,11 @@ namespace Kernel
size_t DiskCache::release_pages(size_t page_count)
{
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
size_t released = release_clean_pages(page_count);
if (released >= page_count)
return page_count;
return released;
// NOTE: There might not actually be page_count pages after this
// function returns. The synchronization must be done elsewhere.
@ -187,13 +152,9 @@ namespace Kernel
void DiskCache::release_all_pages()
{
LockGuard _(m_lock);
ASSERT(m_device.sector_size() > 0);
ASSERT(m_device.sector_size() <= PAGE_SIZE);
uint8_t* temp_buffer = (uint8_t*)kmalloc(m_device.sector_size());
ASSERT(temp_buffer);
LockGuard _(m_lock);
for (auto& cache_block : m_cache)
{
@ -204,51 +165,97 @@ namespace Kernel
m_cache.clear();
}
void DiskCache::CacheBlock::sync(StorageDevice& device)
void DiskCache::PageCache::sync(StorageDevice& device)
{
uint8_t* temp_buffer = (uint8_t*)kmalloc(device.sector_size());
ASSERT(temp_buffer);
if (this->dirty_mask == 0)
return;
ASSERT(device.sector_size() <= PAGE_SIZE);
for (size_t i = 0; i < sectors.size(); i++)
PageTable& page_table = PageTable::current();
page_table.lock();
ASSERT(page_table.is_page_free(0));
page_table.map_page_at(this->paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
page_table.invalidate(0);
for (size_t i = 0; i < PAGE_SIZE / device.sector_size(); i++)
{
if (!sectors[i].dirty)
if (!(this->dirty_mask & (1 << i)))
continue;
read_sector(device, i, temp_buffer);
MUST(device.write_sectors_impl(sectors[i].sector, 1, temp_buffer));
sectors[i].dirty = false;
MUST(device.write_sectors_impl(this->first_sector + i, 1, (const uint8_t*)(i * device.sector_size())));
}
kfree(temp_buffer);
page_table.unmap_page(0);
page_table.invalidate(0);
page_table.unlock();
this->dirty_mask = 0;
}
void DiskCache::CacheBlock::read_sector(StorageDevice& device, size_t index, uint8_t* buffer)
BAN::ErrorOr<void> DiskCache::PageCache::read_sector(StorageDevice& device, uint64_t sector, uint8_t* buffer)
{
ASSERT(index < sectors.size());
ASSERT(device.sector_size() <= PAGE_SIZE);
uint64_t sectors_per_page = PAGE_SIZE / device.sector_size();
uint64_t sector_offset = sector - this->first_sector;
ASSERT(sector_offset < sectors_per_page);
PageTable& page_table = PageTable::current();
page_table.lock();
ASSERT(page_table.is_page_free(0));
page_table.map_page_at(paddr, 0, PageTable::Flags::Present);
memcpy(buffer, (void*)(index * device.sector_size()), device.sector_size());
page_table.map_page_at(this->paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
page_table.invalidate(0);
// Sector not yet cached
if (!(this->sector_mask & (1 << sector_offset)))
{
TRY(device.read_sectors_impl(sector, 1, (uint8_t*)(sector_offset * device.sector_size())));
this->sector_mask |= 1 << sector_offset;
}
memcpy(buffer, (const void*)(sector_offset * device.sector_size()), device.sector_size());
page_table.unmap_page(0);
page_table.invalidate(0);
page_table.unlock();
return {};
}
void DiskCache::CacheBlock::write_sector(StorageDevice& device, size_t index, const uint8_t* buffer)
BAN::ErrorOr<void> DiskCache::PageCache::write_sector(StorageDevice& device, uint64_t sector, const uint8_t* buffer)
{
ASSERT(index < sectors.size());
ASSERT(device.sector_size() <= PAGE_SIZE);
uint64_t sectors_per_page = PAGE_SIZE / device.sector_size();
uint64_t sector_offset = sector - this->first_sector;
ASSERT(sector_offset < sectors_per_page);
PageTable& page_table = PageTable::current();
page_table.lock();
ASSERT(page_table.is_page_free(0));
page_table.map_page_at(paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
memcpy((void*)(index * device.sector_size()), buffer, device.sector_size());
page_table.map_page_at(this->paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
page_table.invalidate(0);
memcpy((void*)(sector_offset * device.sector_size()), buffer, device.sector_size());
this->sector_mask |= 1 << sector_offset;
this->dirty_mask |= 1 << sector_offset;
page_table.unmap_page(0);
page_table.invalidate(0);
page_table.unlock();
return {};
}
}