banan-os/kernel/kernel/Storage/DiskCache.cpp

206 lines
5.3 KiB
C++
Raw Normal View History

#include <kernel/CriticalScope.h>
#include <kernel/LockGuard.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/PageTable.h>
#include <kernel/Storage/DiskCache.h>
#include <kernel/Storage/StorageDevice.h>
namespace Kernel
{
DiskCache::DiskCache(size_t sector_size, StorageDevice& device)
: m_sector_size(sector_size)
, m_device(device)
{
ASSERT(PAGE_SIZE % m_sector_size == 0);
ASSERT(PAGE_SIZE / m_sector_size <= sizeof(PageCache::sector_mask) * 8);
ASSERT(PAGE_SIZE / m_sector_size <= sizeof(PageCache::dirty_mask) * 8);
}
DiskCache::~DiskCache()
{
release_all_pages();
}
bool DiskCache::read_from_cache(uint64_t sector, uint8_t* buffer)
{
uint64_t sectors_per_page = PAGE_SIZE / m_sector_size;
uint64_t page_cache_offset = sector % sectors_per_page;
uint64_t page_cache_start = sector - page_cache_offset;
PageTable& page_table = PageTable::current();
LockGuard page_table_locker(page_table);
ASSERT(page_table.is_page_free(0));
for (auto& cache : m_cache)
{
if (cache.first_sector < page_cache_start)
continue;
if (cache.first_sector > page_cache_start)
break;
if (!(cache.sector_mask & (1 << page_cache_offset)))
continue;
CriticalScope _;
page_table.map_page_at(cache.paddr, 0, PageTable::Flags::Present);
memcpy(buffer, (void*)(page_cache_offset * m_sector_size), m_sector_size);
page_table.unmap_page(0);
return true;
}
return false;
};
BAN::ErrorOr<void> DiskCache::write_to_cache(uint64_t sector, const uint8_t* buffer, bool dirty)
{
uint64_t sectors_per_page = PAGE_SIZE / m_sector_size;
uint64_t page_cache_offset = sector % sectors_per_page;
uint64_t page_cache_start = sector - page_cache_offset;
PageTable& page_table = PageTable::current();
LockGuard page_table_locker(page_table);
ASSERT(page_table.is_page_free(0));
size_t index = 0;
// Search the cache if the have this sector in memory
for (; index < m_cache.size(); index++)
{
auto& cache = m_cache[index];
if (cache.first_sector < page_cache_start)
continue;
if (cache.first_sector > page_cache_start)
break;
{
CriticalScope _;
page_table.map_page_at(cache.paddr, 0, PageTable::Flags::ReadWrite | PageTable::Flags::Present);
memcpy((void*)(page_cache_offset * m_sector_size), buffer, m_sector_size);
page_table.unmap_page(0);
}
cache.sector_mask |= 1 << page_cache_offset;
if (dirty)
cache.dirty_mask |= 1 << page_cache_offset;
return {};
}
// Try to add new page to the cache
paddr_t paddr = Heap::get().take_free_page();
if (paddr == 0)
return BAN::Error::from_errno(ENOMEM);
PageCache cache;
cache.paddr = paddr;
cache.first_sector = page_cache_start;
cache.sector_mask = 1 << page_cache_offset;
cache.dirty_mask = dirty ? cache.sector_mask : 0;
if (auto ret = m_cache.insert(index, cache); ret.is_error())
{
Heap::get().release_page(paddr);
return ret.error();
}
{
CriticalScope _;
page_table.map_page_at(cache.paddr, 0, PageTable::Flags::Present);
memcpy((void*)(page_cache_offset * m_sector_size), buffer, m_sector_size);
page_table.unmap_page(0);
}
return {};
}
BAN::ErrorOr<void> DiskCache::sync()
{
ASSERT(&PageTable::current() == &PageTable::kernel());
auto& page_table = PageTable::kernel();
for (auto& cache : m_cache)
{
if (cache.dirty_mask == 0)
continue;
{
LockGuard _(page_table);
ASSERT(page_table.is_page_free(0));
page_table.map_page_at(cache.paddr, 0, PageTable::Flags::Present);
memcpy(m_sync_cache.data(), (void*)0, PAGE_SIZE);
page_table.unmap_page(0);
}
uint8_t sector_start = 0;
uint8_t sector_count = 0;
while (sector_start + sector_count <= PAGE_SIZE / m_sector_size)
{
if (cache.dirty_mask & (1 << (sector_start + sector_count)))
sector_count++;
else if (sector_count == 0)
sector_start++;
else
{
dprintln("syncing {}->{}", cache.first_sector + sector_start, cache.first_sector + sector_start + sector_count);
TRY(m_device.write_sectors_impl(cache.first_sector + sector_start, sector_count, m_sync_cache.data() + sector_start * m_sector_size));
sector_start += sector_count + 1;
sector_count = 0;
}
}
if (sector_count > 0)
{
dprintln("syncing {}->{}", cache.first_sector + sector_start, cache.first_sector + sector_start + sector_count);
TRY(m_device.write_sectors_impl(cache.first_sector + sector_start, sector_count, m_sync_cache.data() + sector_start * m_sector_size));
}
cache.dirty_mask = 0;
}
return {};
}
size_t DiskCache::release_clean_pages(size_t page_count)
{
// NOTE: There might not actually be page_count pages after this
// function returns. The synchronization must be done elsewhere.
size_t released = 0;
for (size_t i = 0; i < m_cache.size() && released < page_count;)
{
if (m_cache[i].dirty_mask == 0)
{
Heap::get().release_page(m_cache[i].paddr);
m_cache.remove(i);
released++;
continue;
}
i++;
}
(void)m_cache.shrink_to_fit();
return released;
}
size_t DiskCache::release_pages(size_t page_count)
{
size_t released = release_clean_pages(page_count);
if (released >= page_count)
return released;
if (!sync().is_error())
released += release_clean_pages(page_count - released);
return released;
}
void DiskCache::release_all_pages()
{
release_pages(m_cache.size());
}
}