banan-os/kernel/arch/x86_64/PageTable.cpp

1054 lines
29 KiB
C++

#include <kernel/BootInfo.h>
#include <kernel/CPUID.h>
#include <kernel/Lock/SpinLock.h>
#include <kernel/Memory/Heap.h>
#include <kernel/Memory/kmalloc.h>
#include <kernel/Memory/PageTable.h>
extern uint8_t g_kernel_start[];
extern uint8_t g_kernel_end[];
extern uint8_t g_kernel_execute_start[];
extern uint8_t g_kernel_execute_end[];
extern uint8_t g_kernel_writable_start[];
extern uint8_t g_kernel_writable_end[];
extern uint8_t g_userspace_start[];
extern uint8_t g_userspace_end[];
namespace Kernel
{
SpinLock PageTable::s_fast_page_lock;
static constexpr vaddr_t s_hhdm_offset = 0xFFFF800000000000;
static bool s_is_hddm_initialized = false;
constexpr uint64_t s_page_flag_mask = 0x8000000000000FFF;
constexpr uint64_t s_page_addr_mask = ~s_page_flag_mask;
static PageTable* s_kernel = nullptr;
static bool s_has_nxe = false;
static bool s_has_pge = false;
static bool s_has_gib = false;
static paddr_t s_global_pml4_entries[512] { 0 };
static constexpr inline bool is_canonical(uintptr_t addr)
{
constexpr uintptr_t mask = 0xFFFF800000000000;
addr &= mask;
return addr == mask || addr == 0;
}
static constexpr inline uintptr_t uncanonicalize(uintptr_t addr)
{
return addr & 0x0000FFFFFFFFFFFF;
}
static constexpr inline uintptr_t canonicalize(uintptr_t addr)
{
if (addr & 0x0000800000000000)
return addr | 0xFFFF000000000000;
return addr;
}
struct FuncsKmalloc
{
static paddr_t allocate_zeroed_page_aligned_page()
{
void* page = kmalloc(PAGE_SIZE, PAGE_SIZE, true);
ASSERT(page);
memset(page, 0, PAGE_SIZE);
return kmalloc_paddr_of(reinterpret_cast<vaddr_t>(page)).value();
}
static void unallocate_page(paddr_t paddr)
{
kfree(reinterpret_cast<void*>(kmalloc_vaddr_of(paddr).value()));
}
static paddr_t V2P(vaddr_t vaddr)
{
return vaddr - KERNEL_OFFSET + g_boot_info.kernel_paddr;
}
static uint64_t* P2V(paddr_t paddr)
{
return reinterpret_cast<uint64_t*>(paddr - g_boot_info.kernel_paddr + KERNEL_OFFSET);
}
};
struct FuncsHHDM
{
static paddr_t allocate_zeroed_page_aligned_page()
{
const paddr_t paddr = Heap::get().take_free_page();
ASSERT(paddr);
memset(reinterpret_cast<void*>(paddr + s_hhdm_offset), 0, PAGE_SIZE);
return paddr;
}
static void unallocate_page(paddr_t paddr)
{
Heap::get().release_page(paddr);
}
static paddr_t V2P(vaddr_t vaddr)
{
ASSERT(vaddr >= s_hhdm_offset);
ASSERT(vaddr < KERNEL_OFFSET);
return vaddr - s_hhdm_offset;
}
static uint64_t* P2V(paddr_t paddr)
{
ASSERT(paddr != 0);
ASSERT(!BAN::Math::will_addition_overflow(paddr, s_hhdm_offset));
return reinterpret_cast<uint64_t*>(paddr + s_hhdm_offset);
}
};
static paddr_t (*allocate_zeroed_page_aligned_page)() = &FuncsKmalloc::allocate_zeroed_page_aligned_page;
static void (*unallocate_page)(paddr_t) = &FuncsKmalloc::unallocate_page;
static paddr_t (*V2P)(vaddr_t) = &FuncsKmalloc::V2P;
static uint64_t* (*P2V)(paddr_t) = &FuncsKmalloc::P2V;
static inline PageTable::flags_t parse_flags(uint64_t entry)
{
using Flags = PageTable::Flags;
PageTable::flags_t result = 0;
if (s_has_nxe && !(entry & (1ull << 63)))
result |= Flags::Execute;
if (entry & Flags::Reserved)
result |= Flags::Reserved;
if (entry & Flags::UserSupervisor)
result |= Flags::UserSupervisor;
if (entry & Flags::ReadWrite)
result |= Flags::ReadWrite;
if (entry & Flags::Present)
result |= Flags::Present;
return result;
}
// page size:
// 0: 4 KiB
// 1: 2 MiB
// 2: 1 GiB
static void init_map_hhdm_page(paddr_t pml4, paddr_t paddr, uint8_t page_size)
{
ASSERT(0 <= page_size && page_size <= 2);
const vaddr_t vaddr = paddr + s_hhdm_offset;
ASSERT(vaddr < KERNEL_OFFSET);
const vaddr_t uc_vaddr = uncanonicalize(vaddr);
const uint16_t pml4e = (uc_vaddr >> 39) & 0x1FF;
const uint16_t pdpte = (uc_vaddr >> 30) & 0x1FF;
const uint16_t pde = (uc_vaddr >> 21) & 0x1FF;
const uint16_t pte = (uc_vaddr >> 12) & 0x1FF;
static constexpr uint64_t hhdm_flags = (1u << 1) | (1u << 0);
const auto get_or_allocate_entry =
[](paddr_t table, uint16_t table_entry, uint64_t extra_flags) -> paddr_t
{
paddr_t result = 0;
PageTable::with_fast_page(table, [&] {
const uint64_t entry = PageTable::fast_page_as_sized<uint64_t>(table_entry);
if (entry & (1u << 0))
result = entry & s_page_addr_mask;
});
if (result != 0)
return result;
const paddr_t new_paddr = Heap::get().take_free_page();
ASSERT(new_paddr);
PageTable::with_fast_page(new_paddr, [] {
memset(reinterpret_cast<void*>(PageTable::fast_page_as_ptr()), 0, PAGE_SIZE);
});
PageTable::with_fast_page(table, [&] {
uint64_t& entry = PageTable::fast_page_as_sized<uint64_t>(table_entry);
entry = new_paddr | hhdm_flags | extra_flags;
});
return new_paddr;
};
const uint64_t pgsize_flag = page_size ? (static_cast<uint64_t>(1) << 7) : 0;
const uint64_t global_flag = s_has_pge ? (static_cast<uint64_t>(1) << 8) : 0;
const uint64_t noexec_flag = s_has_nxe ? (static_cast<uint64_t>(1) << 63) : 0;
const paddr_t pdpt = get_or_allocate_entry(pml4, pml4e, noexec_flag);
s_global_pml4_entries[pml4e] = pdpt | hhdm_flags;
paddr_t lowest_paddr = pdpt;
uint16_t lowest_entry = pdpte;
if (page_size < 2)
{
lowest_paddr = get_or_allocate_entry(lowest_paddr, lowest_entry, noexec_flag);
lowest_entry = pde;
}
if (page_size < 1)
{
lowest_paddr = get_or_allocate_entry(lowest_paddr, lowest_entry, noexec_flag);
lowest_entry = pte;
}
PageTable::with_fast_page(lowest_paddr, [&] {
uint64_t& entry = PageTable::fast_page_as_sized<uint64_t>(lowest_entry);
entry = paddr | hhdm_flags | noexec_flag | global_flag | pgsize_flag;
});
}
static void init_map_hhdm(paddr_t pml4)
{
for (const auto& entry : g_boot_info.memory_map_entries)
{
bool should_map = false;
switch (entry.type)
{
case MemoryMapEntry::Type::Available:
should_map = true;
break;
case MemoryMapEntry::Type::ACPIReclaim:
case MemoryMapEntry::Type::ACPINVS:
case MemoryMapEntry::Type::Reserved:
should_map = false;
break;
}
if (!should_map)
continue;
constexpr size_t one_gib = 1024 * 1024 * 1024;
constexpr size_t two_mib = 2 * 1024 * 1024;
const paddr_t entry_start = (entry.address + PAGE_SIZE - 1) & PAGE_ADDR_MASK;
const paddr_t entry_end = (entry.address + entry.length) & PAGE_ADDR_MASK;
for (paddr_t paddr = entry_start; paddr < entry_end;)
{
if (s_has_gib && paddr % one_gib == 0 && paddr + one_gib <= entry_end)
{
init_map_hhdm_page(pml4, paddr, 2);
paddr += one_gib;
}
else if (paddr % two_mib == 0 && paddr + two_mib <= entry_end)
{
init_map_hhdm_page(pml4, paddr, 1);
paddr += two_mib;
}
else
{
init_map_hhdm_page(pml4, paddr, 0);
paddr += PAGE_SIZE;
}
}
}
}
static paddr_t copy_page_from_kmalloc_to_heap(paddr_t kmalloc_paddr)
{
const paddr_t heap_paddr = Heap::get().take_free_page();
ASSERT(heap_paddr);
const vaddr_t kmalloc_vaddr = kmalloc_vaddr_of(kmalloc_paddr).value();
PageTable::with_fast_page(heap_paddr, [kmalloc_vaddr] {
memcpy(PageTable::fast_page_as_ptr(), reinterpret_cast<void*>(kmalloc_vaddr), PAGE_SIZE);
});
return heap_paddr;
}
static void copy_paging_structure_to_heap(uint64_t* old_table, uint64_t* new_table, int depth)
{
if (depth == 0)
return;
constexpr uint64_t page_flag_mask = 0x8000000000000FFF;
constexpr uint64_t page_addr_mask = ~page_flag_mask;
for (uint16_t index = 0; index < 512; index++)
{
const uint64_t old_entry = old_table[index];
if (old_entry == 0)
{
new_table[index] = 0;
continue;
}
const paddr_t old_paddr = old_entry & page_addr_mask;
const paddr_t new_paddr = copy_page_from_kmalloc_to_heap(old_paddr);
new_table[index] = new_paddr | (old_entry & page_flag_mask);
uint64_t* next_old_table = reinterpret_cast<uint64_t*>(old_paddr + s_hhdm_offset);
uint64_t* next_new_table = reinterpret_cast<uint64_t*>(new_paddr + s_hhdm_offset);
copy_paging_structure_to_heap(next_old_table, next_new_table, depth - 1);
}
}
static void free_kmalloc_paging_structure(uint64_t* table, int depth)
{
if (depth == 0)
return;
constexpr uint64_t page_flag_mask = 0x8000000000000FFF;
constexpr uint64_t page_addr_mask = ~page_flag_mask;
for (uint16_t index = 0; index < 512; index++)
{
const uint64_t entry = table[index];
if (entry == 0)
continue;
const paddr_t paddr = entry & page_addr_mask;
uint64_t* next_table = reinterpret_cast<uint64_t*>(paddr + s_hhdm_offset);
free_kmalloc_paging_structure(next_table, depth - 1);
kfree(reinterpret_cast<void*>(kmalloc_vaddr_of(paddr).value()));
}
}
void PageTable::initialize_pre_heap()
{
if (CPUID::has_nxe())
s_has_nxe = true;
if (CPUID::has_pge())
s_has_pge = true;
if (CPUID::has_1gib_pages())
s_has_gib = true;
ASSERT(s_kernel == nullptr);
s_kernel = new PageTable();
ASSERT(s_kernel);
s_kernel->m_highest_paging_struct = allocate_zeroed_page_aligned_page();
s_kernel->prepare_fast_page();
s_kernel->initialize_kernel();
for (auto pml4e : s_global_pml4_entries)
ASSERT(pml4e == 0);
const uint64_t* pml4 = P2V(s_kernel->m_highest_paging_struct);
s_global_pml4_entries[511] = pml4[511];
}
void PageTable::initialize_post_heap()
{
ASSERT(s_kernel);
init_map_hhdm(s_kernel->m_highest_paging_struct);
const paddr_t old_pml4_paddr = s_kernel->m_highest_paging_struct;
const paddr_t new_pml4_paddr = copy_page_from_kmalloc_to_heap(old_pml4_paddr);
uint64_t* old_pml4 = reinterpret_cast<uint64_t*>(kmalloc_vaddr_of(old_pml4_paddr).value());
uint64_t* new_pml4 = reinterpret_cast<uint64_t*>(new_pml4_paddr + s_hhdm_offset);
const paddr_t old_pdpt_paddr = old_pml4[511] & s_page_addr_mask;
const paddr_t new_pdpt_paddr = Heap::get().take_free_page();
ASSERT(new_pdpt_paddr);
uint64_t* old_pdpt = reinterpret_cast<uint64_t*>(old_pdpt_paddr + s_hhdm_offset);
uint64_t* new_pdpt = reinterpret_cast<uint64_t*>(new_pdpt_paddr + s_hhdm_offset);
copy_paging_structure_to_heap(old_pdpt, new_pdpt, 2);
new_pml4[511] = new_pdpt_paddr | (old_pml4[511] & s_page_flag_mask);
s_global_pml4_entries[511] = new_pml4[511];
s_kernel->m_highest_paging_struct = new_pml4_paddr;
s_kernel->load();
free_kmalloc_paging_structure(old_pdpt, 2);
kfree(reinterpret_cast<void*>(kmalloc_vaddr_of(old_pdpt_paddr).value()));
kfree(reinterpret_cast<void*>(kmalloc_vaddr_of(old_pml4_paddr).value()));
allocate_zeroed_page_aligned_page = &FuncsHHDM::allocate_zeroed_page_aligned_page;
unallocate_page = &FuncsHHDM::unallocate_page;
V2P = &FuncsHHDM::V2P;
P2V = &FuncsHHDM::P2V;
s_is_hddm_initialized = true;
// This is a hack to unmap fast page. fast page pt is copied
// while it is mapped, so we need to manually unmap it
SpinLockGuard _(s_fast_page_lock);
unmap_fast_page();
}
void PageTable::initial_load()
{
if (s_has_nxe)
{
asm volatile(
"movl $0xC0000080, %%ecx;"
"rdmsr;"
"orl $0x800, %%eax;"
"wrmsr"
::: "eax", "ecx", "edx", "memory"
);
}
if (s_has_pge)
{
asm volatile(
"movq %%cr4, %%rax;"
"orq $0x80, %%rax;"
"movq %%rax, %%cr4;"
::: "rax"
);
}
// 64-bit always has PAT, set PAT4 = WC, PAT5 = WT
asm volatile(
"movl $0x277, %%ecx;"
"rdmsr;"
"movw $0x0401, %%dx;"
"wrmsr;"
::: "eax", "ecx", "edx", "memory"
);
// enable write protect
asm volatile(
"movq %%cr0, %%rax;"
"orq $0x10000, %%rax;"
"movq %%rax, %%cr0;"
::: "rax"
);
load();
}
PageTable& PageTable::kernel()
{
ASSERT(s_kernel);
return *s_kernel;
}
bool PageTable::is_valid_pointer(uintptr_t pointer)
{
if (!is_canonical(pointer))
return false;
return true;
}
void PageTable::initialize_kernel()
{
// Map (phys_kernel_start -> phys_kernel_end) to (virt_kernel_start -> virt_kernel_end)
const vaddr_t kernel_start = reinterpret_cast<vaddr_t>(g_kernel_start);
map_range_at(
V2P(kernel_start),
kernel_start,
g_kernel_end - g_kernel_start,
Flags::Present
);
// Map executable kernel memory as executable
const vaddr_t kernel_execute_start = reinterpret_cast<vaddr_t>(g_kernel_execute_start);
map_range_at(
V2P(kernel_execute_start),
kernel_execute_start,
g_kernel_execute_end - g_kernel_execute_start,
Flags::Execute | Flags::Present
);
// Map writable kernel memory as writable
const vaddr_t kernel_writable_start = reinterpret_cast<vaddr_t>(g_kernel_writable_start);
map_range_at(
V2P(kernel_writable_start),
kernel_writable_start,
g_kernel_writable_end - g_kernel_writable_start,
Flags::ReadWrite | Flags::Present
);
// Map userspace memory
const vaddr_t userspace_start = reinterpret_cast<vaddr_t>(g_userspace_start);
map_range_at(
V2P(userspace_start),
userspace_start,
g_userspace_end - g_userspace_start,
Flags::Execute | Flags::UserSupervisor | Flags::Present
);
}
void PageTable::prepare_fast_page()
{
constexpr vaddr_t uc_vaddr = uncanonicalize(fast_page());
constexpr uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF;
constexpr uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF;
constexpr uint64_t pde = (uc_vaddr >> 21) & 0x1FF;
uint64_t* pml4 = P2V(m_highest_paging_struct);
ASSERT(!(pml4[pml4e] & Flags::Present));
pml4[pml4e] = allocate_zeroed_page_aligned_page() | Flags::ReadWrite | Flags::Present;
uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
ASSERT(!(pdpt[pdpte] & Flags::Present));
pdpt[pdpte] = allocate_zeroed_page_aligned_page() | Flags::ReadWrite | Flags::Present;
uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
ASSERT(!(pd[pde] & Flags::Present));
pd[pde] = allocate_zeroed_page_aligned_page() | Flags::ReadWrite | Flags::Present;
}
void PageTable::map_fast_page(paddr_t paddr)
{
ASSERT(s_kernel);
ASSERT(paddr);
ASSERT(s_fast_page_lock.current_processor_has_lock());
constexpr vaddr_t uc_vaddr = uncanonicalize(fast_page());
constexpr uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF;
constexpr uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF;
constexpr uint64_t pde = (uc_vaddr >> 21) & 0x1FF;
constexpr uint64_t pte = (uc_vaddr >> 12) & 0x1FF;
const uint64_t* pml4 = P2V(s_kernel->m_highest_paging_struct);
const uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
const uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
uint64_t* pt = P2V(pd[pde] & s_page_addr_mask);
ASSERT(!(pt[pte] & Flags::Present));
pt[pte] = paddr | Flags::ReadWrite | Flags::Present;
invalidate(fast_page(), false);
}
void PageTable::unmap_fast_page()
{
ASSERT(s_kernel);
ASSERT(s_fast_page_lock.current_processor_has_lock());
constexpr vaddr_t uc_vaddr = uncanonicalize(fast_page());
constexpr uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF;
constexpr uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF;
constexpr uint64_t pde = (uc_vaddr >> 21) & 0x1FF;
constexpr uint64_t pte = (uc_vaddr >> 12) & 0x1FF;
const uint64_t* pml4 = P2V(s_kernel->m_highest_paging_struct);
const uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
const uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
uint64_t* pt = P2V(pd[pde] & s_page_addr_mask);
ASSERT(pt[pte] & Flags::Present);
pt[pte] = 0;
invalidate(fast_page(), false);
}
BAN::ErrorOr<PageTable*> PageTable::create_userspace()
{
SpinLockGuard _(s_kernel->m_lock);
PageTable* page_table = new PageTable;
if (page_table == nullptr)
return BAN::Error::from_errno(ENOMEM);
page_table->map_kernel_memory();
return page_table;
}
void PageTable::map_kernel_memory()
{
ASSERT(s_kernel);
ASSERT(s_global_pml4_entries[511]);
ASSERT(m_highest_paging_struct == 0);
m_highest_paging_struct = allocate_zeroed_page_aligned_page();
PageTable::with_fast_page(m_highest_paging_struct, [] {
for (size_t i = 0; i < 512; i++)
{
if (s_global_pml4_entries[i] == 0)
continue;
ASSERT(i >= 256);
PageTable::fast_page_as_sized<uint64_t>(i) = s_global_pml4_entries[i];
}
});
}
PageTable::~PageTable()
{
if (m_highest_paging_struct == 0)
return;
// NOTE: we only loop until 256 since after that is hhdm
const uint64_t* pml4 = P2V(m_highest_paging_struct);
for (uint64_t pml4e = 0; pml4e < 256; pml4e++)
{
if (!(pml4[pml4e] & Flags::Present))
continue;
const uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
for (uint64_t pdpte = 0; pdpte < 512; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
continue;
const uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
for (uint64_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
continue;
unallocate_page(pd[pde] & s_page_addr_mask);
}
unallocate_page(pdpt[pdpte] & s_page_addr_mask);
}
unallocate_page(pml4[pml4e] & s_page_addr_mask);
}
unallocate_page(m_highest_paging_struct);
}
void PageTable::load()
{
SpinLockGuard _(m_lock);
asm volatile("movq %0, %%cr3" :: "r"(m_highest_paging_struct));
Processor::set_current_page_table(this);
}
void PageTable::invalidate(vaddr_t vaddr, bool send_smp_message)
{
ASSERT(vaddr % PAGE_SIZE == 0);
asm volatile("invlpg (%0)" :: "r"(vaddr) : "memory");
if (send_smp_message)
{
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = 1
}
});
}
}
void PageTable::unmap_page(vaddr_t vaddr, bool send_smp_message)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
if (vaddr >= KERNEL_OFFSET)
ASSERT(vaddr >= (vaddr_t)g_kernel_start);
if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel))
Kernel::panic("unmapping {8H}, kernel: {}", vaddr, this == s_kernel);
ASSERT(is_canonical(vaddr));
const vaddr_t uc_vaddr = uncanonicalize(vaddr);
ASSERT(vaddr % PAGE_SIZE == 0);
const uint16_t pml4e = (uc_vaddr >> 39) & 0x1FF;
const uint16_t pdpte = (uc_vaddr >> 30) & 0x1FF;
const uint16_t pde = (uc_vaddr >> 21) & 0x1FF;
const uint16_t pte = (uc_vaddr >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
if (is_page_free(vaddr))
Kernel::panic("trying to unmap unmapped page 0x{H}", vaddr);
uint64_t* pml4 = P2V(m_highest_paging_struct);
uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
uint64_t* pt = P2V(pd[pde] & s_page_addr_mask);
pt[pte] = 0;
invalidate(vaddr, send_smp_message);
}
void PageTable::unmap_range(vaddr_t vaddr, size_t size)
{
ASSERT(vaddr % PAGE_SIZE == 0);
size_t page_count = range_page_count(vaddr, size);
SpinLockGuard _(m_lock);
for (vaddr_t page = 0; page < page_count; page++)
unmap_page(vaddr + page * PAGE_SIZE, false);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = page_count
}
});
}
void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags, MemoryType memory_type, bool send_smp_message)
{
ASSERT(vaddr);
ASSERT(vaddr != fast_page());
if (vaddr < KERNEL_OFFSET && this == s_kernel)
panic("kernel is mapping below kernel offset");
if (vaddr >= s_hhdm_offset && this != s_kernel)
panic("user is mapping above hhdm offset");
ASSERT(is_canonical(vaddr));
const vaddr_t uc_vaddr = uncanonicalize(vaddr);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
ASSERT(flags & Flags::Used);
const uint16_t pml4e = (uc_vaddr >> 39) & 0x1FF;
const uint16_t pdpte = (uc_vaddr >> 30) & 0x1FF;
const uint16_t pde = (uc_vaddr >> 21) & 0x1FF;
const uint16_t pte = (uc_vaddr >> 12) & 0x1FF;
uint64_t extra_flags = 0;
if (s_has_pge && pml4e == 511) // Map kernel memory as global
extra_flags |= 1ull << 8;
if (s_has_nxe && !(flags & Flags::Execute))
extra_flags |= 1ull << 63;
if (flags & Flags::Reserved)
extra_flags |= Flags::Reserved;
if (memory_type == MemoryType::Uncached)
extra_flags |= (1ull << 4);
if (memory_type == MemoryType::WriteCombining)
extra_flags |= (1ull << 7);
if (memory_type == MemoryType::WriteThrough)
extra_flags |= (1ull << 7) | (1ull << 3);
// NOTE: we add present here, since it has to be available in higher level structures
flags_t uwr_flags = (flags & (Flags::UserSupervisor | Flags::ReadWrite)) | Flags::Present;
SpinLockGuard _(m_lock);
const auto allocate_entry_if_needed =
[](uint64_t* table, uint16_t index, flags_t flags) -> uint64_t*
{
uint64_t entry = table[index];
if ((entry & flags) == flags)
return P2V(entry & s_page_addr_mask);
if (!(entry & Flags::Present))
entry = allocate_zeroed_page_aligned_page();
table[index] = entry | flags;
return P2V(entry & s_page_addr_mask);
};
uint64_t* pml4 = P2V(m_highest_paging_struct);
uint64_t* pdpt = allocate_entry_if_needed(pml4, pml4e, uwr_flags);
uint64_t* pd = allocate_entry_if_needed(pdpt, pdpte, uwr_flags);
uint64_t* pt = allocate_entry_if_needed(pd, pde, uwr_flags);
if (!(flags & Flags::Present))
uwr_flags &= ~Flags::Present;
pt[pte] = paddr | uwr_flags | extra_flags;
invalidate(vaddr, send_smp_message);
}
void PageTable::map_range_at(paddr_t paddr, vaddr_t vaddr, size_t size, flags_t flags, MemoryType memory_type)
{
ASSERT(is_canonical(vaddr));
ASSERT(vaddr);
ASSERT(paddr % PAGE_SIZE == 0);
ASSERT(vaddr % PAGE_SIZE == 0);
size_t page_count = range_page_count(vaddr, size);
SpinLockGuard _(m_lock);
for (size_t page = 0; page < page_count; page++)
map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags, memory_type, false);
Processor::broadcast_smp_message({
.type = Processor::SMPMessage::Type::FlushTLB,
.flush_tlb = {
.vaddr = vaddr,
.page_count = page_count
}
});
}
uint64_t PageTable::get_page_data(vaddr_t vaddr) const
{
ASSERT(is_canonical(vaddr));
const vaddr_t uc_vaddr = uncanonicalize(vaddr);
ASSERT(vaddr % PAGE_SIZE == 0);
const uint16_t pml4e = (uc_vaddr >> 39) & 0x1FF;
const uint16_t pdpte = (uc_vaddr >> 30) & 0x1FF;
const uint16_t pde = (uc_vaddr >> 21) & 0x1FF;
const uint16_t pte = (uc_vaddr >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
const uint64_t* pml4 = P2V(m_highest_paging_struct);
if (!(pml4[pml4e] & Flags::Present))
return 0;
const uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
if (!(pdpt[pdpte] & Flags::Present))
return 0;
const uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
if (!(pd[pde] & Flags::Present))
return 0;
const uint64_t* pt = P2V(pd[pde] & s_page_addr_mask);
if (!(pt[pte] & Flags::Used))
return 0;
return pt[pte];
}
PageTable::flags_t PageTable::get_page_flags(vaddr_t addr) const
{
return parse_flags(get_page_data(addr));
}
paddr_t PageTable::physical_address_of(vaddr_t addr) const
{
uint64_t page_data = get_page_data(addr);
return page_data & s_page_addr_mask;
}
bool PageTable::reserve_page(vaddr_t vaddr, bool only_free)
{
SpinLockGuard _(m_lock);
ASSERT(vaddr % PAGE_SIZE == 0);
if (only_free && !is_page_free(vaddr))
return false;
map_page_at(0, vaddr, Flags::Reserved);
return true;
}
bool PageTable::reserve_range(vaddr_t vaddr, size_t bytes, bool only_free)
{
if (size_t rem = bytes % PAGE_SIZE)
bytes += PAGE_SIZE - rem;
ASSERT(vaddr % PAGE_SIZE == 0);
SpinLockGuard _(m_lock);
if (only_free && !is_range_free(vaddr, bytes))
return false;
for (size_t offset = 0; offset < bytes; offset += PAGE_SIZE)
reserve_page(vaddr + offset);
return true;
}
vaddr_t PageTable::reserve_free_page(vaddr_t first_address, vaddr_t last_address)
{
if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_end)
first_address = (vaddr_t)g_kernel_end;
if (size_t rem = first_address % PAGE_SIZE)
first_address += PAGE_SIZE - rem;
if (size_t rem = last_address % PAGE_SIZE)
last_address -= rem;
ASSERT(is_canonical(first_address));
ASSERT(is_canonical(last_address));
const vaddr_t uc_vaddr_start = uncanonicalize(first_address);
const vaddr_t uc_vaddr_end = uncanonicalize(last_address);
uint16_t pml4e = (uc_vaddr_start >> 39) & 0x1FF;
uint16_t pdpte = (uc_vaddr_start >> 30) & 0x1FF;
uint16_t pde = (uc_vaddr_start >> 21) & 0x1FF;
uint16_t pte = (uc_vaddr_start >> 12) & 0x1FF;
const uint16_t e_pml4e = (uc_vaddr_end >> 39) & 0x1FF;
const uint16_t e_pdpte = (uc_vaddr_end >> 30) & 0x1FF;
const uint16_t e_pde = (uc_vaddr_end >> 21) & 0x1FF;
const uint16_t e_pte = (uc_vaddr_end >> 12) & 0x1FF;
SpinLockGuard _(m_lock);
// Try to find free page that can be mapped without
// allocations (page table with unused entries)
const uint64_t* pml4 = P2V(m_highest_paging_struct);
for (; pml4e < 512; pml4e++)
{
if (pml4e > e_pml4e)
break;
if (!(pml4[pml4e] & Flags::Present))
continue;
const uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
for (; pdpte < 512; pdpte++)
{
if (pml4e == e_pml4e && pdpte > e_pdpte)
break;
if (!(pdpt[pdpte] & Flags::Present))
continue;
const uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
for (; pde < 512; pde++)
{
if (pml4e == e_pml4e && pdpte == e_pdpte && pde > e_pde)
break;
if (!(pd[pde] & Flags::Present))
continue;
const uint64_t* pt = P2V(pd[pde] & s_page_addr_mask);
for (; pte < 512; pte++)
{
if (pml4e == e_pml4e && pdpte == e_pdpte && pde == e_pde && pte >= e_pte)
break;
if (!(pt[pte] & Flags::Used))
{
vaddr_t vaddr = 0;
vaddr |= static_cast<uint64_t>(pml4e) << 39;
vaddr |= static_cast<uint64_t>(pdpte) << 30;
vaddr |= static_cast<uint64_t>(pde) << 21;
vaddr |= static_cast<uint64_t>(pte) << 12;
vaddr = canonicalize(vaddr);
ASSERT(reserve_page(vaddr));
return vaddr;
}
}
}
}
}
for (vaddr_t uc_vaddr = uc_vaddr_start; uc_vaddr < uc_vaddr_end; uc_vaddr += PAGE_SIZE)
{
if (vaddr_t vaddr = canonicalize(uc_vaddr); is_page_free(vaddr))
{
ASSERT(reserve_page(vaddr));
return vaddr;
}
}
ASSERT_NOT_REACHED();
}
vaddr_t PageTable::reserve_free_contiguous_pages(size_t page_count, vaddr_t first_address, vaddr_t last_address)
{
if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_start)
first_address = (vaddr_t)g_kernel_start;
if (size_t rem = first_address % PAGE_SIZE)
first_address += PAGE_SIZE - rem;
if (size_t rem = last_address % PAGE_SIZE)
last_address -= rem;
ASSERT(is_canonical(first_address));
ASSERT(is_canonical(last_address));
SpinLockGuard _(m_lock);
for (vaddr_t vaddr = first_address; vaddr < last_address;)
{
bool valid { true };
for (size_t page = 0; page < page_count; page++)
{
if (!is_canonical(vaddr + page * PAGE_SIZE))
{
vaddr = canonicalize(uncanonicalize(vaddr) + page * PAGE_SIZE);
valid = false;
break;
}
if (!is_page_free(vaddr + page * PAGE_SIZE))
{
vaddr += (page + 1) * PAGE_SIZE;
valid = false;
break;
}
}
if (valid)
{
ASSERT(reserve_range(vaddr, page_count * PAGE_SIZE));
return vaddr;
}
}
ASSERT_NOT_REACHED();
}
bool PageTable::is_page_free(vaddr_t page) const
{
ASSERT(page % PAGE_SIZE == 0);
return !(get_page_flags(page) & Flags::Used);
}
bool PageTable::is_range_free(vaddr_t vaddr, size_t size) const
{
vaddr_t s_page = vaddr / PAGE_SIZE;
vaddr_t e_page = BAN::Math::div_round_up<vaddr_t>(vaddr + size, PAGE_SIZE);
SpinLockGuard _(m_lock);
for (vaddr_t page = s_page; page < e_page; page++)
if (!is_page_free(page * PAGE_SIZE))
return false;
return true;
}
static void dump_range(vaddr_t start, vaddr_t end, PageTable::flags_t flags)
{
if (start == 0)
return;
dprintln("{}-{}: {}{}{}{}",
(void*)canonicalize(start),
(void*)canonicalize(end - 1),
flags & PageTable::Flags::Execute ? 'x' : '-',
flags & PageTable::Flags::UserSupervisor ? 'u' : '-',
flags & PageTable::Flags::ReadWrite ? 'w' : '-',
flags & PageTable::Flags::Present ? 'r' : '-'
);
}
void PageTable::debug_dump()
{
SpinLockGuard _(m_lock);
flags_t flags = 0;
vaddr_t start = 0;
const uint64_t* pml4 = P2V(m_highest_paging_struct);
for (uint64_t pml4e = 0; pml4e < 512; pml4e++)
{
if (!(pml4[pml4e] & Flags::Present) || (pml4e >= 256 && pml4e < 511))
{
dump_range(start, (pml4e << 39), flags);
start = 0;
continue;
}
const uint64_t* pdpt = P2V(pml4[pml4e] & s_page_addr_mask);
for (uint64_t pdpte = 0; pdpte < 512; pdpte++)
{
if (!(pdpt[pdpte] & Flags::Present))
{
dump_range(start, (pml4e << 39) | (pdpte << 30), flags);
start = 0;
continue;
}
const uint64_t* pd = P2V(pdpt[pdpte] & s_page_addr_mask);
for (uint64_t pde = 0; pde < 512; pde++)
{
if (!(pd[pde] & Flags::Present))
{
dump_range(start, (pml4e << 39) | (pdpte << 30) | (pde << 21), flags);
start = 0;
continue;
}
const uint64_t* pt = P2V(pd[pde] & s_page_addr_mask);
for (uint64_t pte = 0; pte < 512; pte++)
{
if (parse_flags(pt[pte]) != flags)
{
dump_range(start, (pml4e << 39) | (pdpte << 30) | (pde << 21) | (pte << 12), flags);
start = 0;
}
if (!(pt[pte] & Flags::Used))
continue;
if (start == 0)
{
flags = parse_flags(pt[pte]);
start = (pml4e << 39) | (pdpte << 30) | (pde << 21) | (pte << 12);
}
}
}
}
}
}
}