#include #include #include #include #include extern uint8_t g_kernel_start[]; extern uint8_t g_kernel_end[]; extern uint8_t g_kernel_execute_start[]; extern uint8_t g_kernel_execute_end[]; extern uint8_t g_kernel_writable_start[]; extern uint8_t g_kernel_writable_end[]; extern uint8_t g_userspace_start[]; extern uint8_t g_userspace_end[]; namespace Kernel { SpinLock PageTable::s_fast_page_lock; static PageTable* s_kernel = nullptr; static bool s_has_nxe = false; static bool s_has_pge = false; // PML4 entry for kernel memory static paddr_t s_global_pml4e = 0; static constexpr inline bool is_canonical(uintptr_t addr) { constexpr uintptr_t mask = 0xFFFF800000000000; addr &= mask; return addr == mask || addr == 0; } static constexpr inline uintptr_t uncanonicalize(uintptr_t addr) { return addr & 0x0000FFFFFFFFFFFF; } static constexpr inline uintptr_t canonicalize(uintptr_t addr) { if (addr & 0x0000800000000000) return addr | 0xFFFF000000000000; return addr; } static inline PageTable::flags_t parse_flags(uint64_t entry) { using Flags = PageTable::Flags; PageTable::flags_t result = 0; if (s_has_nxe && !(entry & (1ull << 63))) result |= Flags::Execute; if (entry & Flags::Reserved) result |= Flags::Reserved; if (entry & Flags::UserSupervisor) result |= Flags::UserSupervisor; if (entry & Flags::ReadWrite) result |= Flags::ReadWrite; if (entry & Flags::Present) result |= Flags::Present; return result; } void PageTable::initialize() { if (CPUID::has_nxe()) s_has_nxe = true; if (CPUID::has_pge()) s_has_pge = true; ASSERT(s_kernel == nullptr); s_kernel = new PageTable(); ASSERT(s_kernel); s_kernel->initialize_kernel(); } void PageTable::initial_load() { if (s_has_nxe) { asm volatile( "movl $0xC0000080, %%ecx;" "rdmsr;" "orl $0x800, %%eax;" "wrmsr" ::: "eax", "ecx", "edx", "memory" ); } if (s_has_pge) { asm volatile( "movq %%cr4, %%rax;" "orq $0x80, %%rax;" "movq %%rax, %%cr4;" ::: "rax" ); } // 64-bit always has PAT, set PAT4 = WC, PAT5 = WT asm volatile( "movl $0x277, %%ecx;" "rdmsr;" "movw $0x0401, %%dx;" "wrmsr;" ::: "eax", "ecx", "edx", "memory" ); // enable write protect asm volatile( "movq %%cr0, %%rax;" "orq $0x10000, %%rax;" "movq %%rax, %%cr0;" ::: "rax" ); load(); } PageTable& PageTable::kernel() { ASSERT(s_kernel); return *s_kernel; } bool PageTable::is_valid_pointer(uintptr_t pointer) { if (!is_canonical(pointer)) return false; return true; } static uint64_t* allocate_zeroed_page_aligned_page() { void* page = kmalloc(PAGE_SIZE, PAGE_SIZE, true); ASSERT(page); memset(page, 0, PAGE_SIZE); return (uint64_t*)page; } template static paddr_t V2P(const T vaddr) { return (vaddr_t)vaddr - KERNEL_OFFSET + g_boot_info.kernel_paddr; } template static vaddr_t P2V(const T paddr) { return (paddr_t)paddr - g_boot_info.kernel_paddr + KERNEL_OFFSET; } void PageTable::initialize_kernel() { ASSERT(s_global_pml4e == 0); s_global_pml4e = V2P(allocate_zeroed_page_aligned_page()); m_highest_paging_struct = V2P(allocate_zeroed_page_aligned_page()); uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); pml4[511] = s_global_pml4e; prepare_fast_page(); // Map (phys_kernel_start -> phys_kernel_end) to (virt_kernel_start -> virt_kernel_end) ASSERT((vaddr_t)g_kernel_start % PAGE_SIZE == 0); map_range_at( V2P(g_kernel_start), (vaddr_t)g_kernel_start, g_kernel_end - g_kernel_start, Flags::Present ); // Map executable kernel memory as executable map_range_at( V2P(g_kernel_execute_start), (vaddr_t)g_kernel_execute_start, g_kernel_execute_end - g_kernel_execute_start, Flags::Execute | Flags::Present ); // Map writable kernel memory as writable map_range_at( V2P(g_kernel_writable_start), (vaddr_t)g_kernel_writable_start, g_kernel_writable_end - g_kernel_writable_start, Flags::ReadWrite | Flags::Present ); // Map userspace memory map_range_at( V2P(g_userspace_start), (vaddr_t)g_userspace_start, g_userspace_end - g_userspace_start, Flags::Execute | Flags::UserSupervisor | Flags::Present ); } void PageTable::prepare_fast_page() { constexpr vaddr_t uc_vaddr = uncanonicalize(fast_page()); constexpr uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF; constexpr uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF; constexpr uint64_t pde = (uc_vaddr >> 21) & 0x1FF; constexpr uint64_t pte = (uc_vaddr >> 12) & 0x1FF; uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); ASSERT(!(pml4[pml4e] & Flags::Present)); pml4[pml4e] = V2P(allocate_zeroed_page_aligned_page()) | Flags::ReadWrite | Flags::Present; uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); ASSERT(!(pdpt[pdpte] & Flags::Present)); pdpt[pdpte] = V2P(allocate_zeroed_page_aligned_page()) | Flags::ReadWrite | Flags::Present; uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); ASSERT(!(pd[pde] & Flags::Present)); pd[pde] = V2P(allocate_zeroed_page_aligned_page()) | Flags::ReadWrite | Flags::Present; uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); ASSERT(!(pt[pte] & Flags::Present)); pt[pte] = V2P(allocate_zeroed_page_aligned_page()); } void PageTable::map_fast_page(paddr_t paddr) { ASSERT(s_kernel); ASSERT(paddr); ASSERT(s_fast_page_lock.current_processor_has_lock()); constexpr vaddr_t uc_vaddr = uncanonicalize(fast_page()); constexpr uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF; constexpr uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF; constexpr uint64_t pde = (uc_vaddr >> 21) & 0x1FF; constexpr uint64_t pte = (uc_vaddr >> 12) & 0x1FF; uint64_t* pml4 = (uint64_t*)P2V(s_kernel->m_highest_paging_struct); uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); ASSERT(!(pt[pte] & Flags::Present)); pt[pte] = paddr | Flags::ReadWrite | Flags::Present; invalidate(fast_page(), false); } void PageTable::unmap_fast_page() { ASSERT(s_kernel); ASSERT(s_fast_page_lock.current_processor_has_lock()); constexpr vaddr_t uc_vaddr = uncanonicalize(fast_page()); constexpr uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF; constexpr uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF; constexpr uint64_t pde = (uc_vaddr >> 21) & 0x1FF; constexpr uint64_t pte = (uc_vaddr >> 12) & 0x1FF; uint64_t* pml4 = (uint64_t*)P2V(s_kernel->m_highest_paging_struct); uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); ASSERT(pt[pte] & Flags::Present); pt[pte] = 0; invalidate(fast_page(), false); } BAN::ErrorOr PageTable::create_userspace() { SpinLockGuard _(s_kernel->m_lock); PageTable* page_table = new PageTable; if (page_table == nullptr) return BAN::Error::from_errno(ENOMEM); page_table->map_kernel_memory(); return page_table; } void PageTable::map_kernel_memory() { ASSERT(s_kernel); ASSERT(s_global_pml4e); ASSERT(m_highest_paging_struct == 0); m_highest_paging_struct = V2P(allocate_zeroed_page_aligned_page()); uint64_t* kernel_pml4 = (uint64_t*)P2V(s_kernel->m_highest_paging_struct); uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); pml4[511] = kernel_pml4[511]; } PageTable::~PageTable() { uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); // NOTE: we only loop until 511 since the last one is the kernel memory for (uint64_t pml4e = 0; pml4e < 511; pml4e++) { if (!(pml4[pml4e] & Flags::Present)) continue; uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); for (uint64_t pdpte = 0; pdpte < 512; pdpte++) { if (!(pdpt[pdpte] & Flags::Present)) continue; uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); for (uint64_t pde = 0; pde < 512; pde++) { if (!(pd[pde] & Flags::Present)) continue; kfree((void*)P2V(pd[pde] & PAGE_ADDR_MASK)); } kfree(pd); } kfree(pdpt); } kfree(pml4); } void PageTable::load() { SpinLockGuard _(m_lock); asm volatile("movq %0, %%cr3" :: "r"(m_highest_paging_struct)); Processor::set_current_page_table(this); } void PageTable::invalidate(vaddr_t vaddr, bool send_smp_message) { ASSERT(vaddr % PAGE_SIZE == 0); asm volatile("invlpg (%0)" :: "r"(vaddr) : "memory"); if (send_smp_message) { Processor::broadcast_smp_message({ .type = Processor::SMPMessage::Type::FlushTLB, .flush_tlb = { .vaddr = vaddr, .page_count = 1 } }); } } void PageTable::unmap_page(vaddr_t vaddr, bool send_smp_message) { ASSERT(vaddr); ASSERT(vaddr != fast_page()); if (vaddr >= KERNEL_OFFSET) ASSERT(vaddr >= (vaddr_t)g_kernel_start); if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel)) Kernel::panic("unmapping {8H}, kernel: {}", vaddr, this == s_kernel); ASSERT(is_canonical(vaddr)); vaddr_t uc_vaddr = uncanonicalize(vaddr); ASSERT(vaddr % PAGE_SIZE == 0); uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF; uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF; uint64_t pde = (uc_vaddr >> 21) & 0x1FF; uint64_t pte = (uc_vaddr >> 12) & 0x1FF; SpinLockGuard _(m_lock); if (is_page_free(vaddr)) Kernel::panic("trying to unmap unmapped page 0x{H}", vaddr); uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); pt[pte] = 0; invalidate(vaddr, send_smp_message); } void PageTable::unmap_range(vaddr_t vaddr, size_t size) { ASSERT(vaddr % PAGE_SIZE == 0); size_t page_count = range_page_count(vaddr, size); SpinLockGuard _(m_lock); for (vaddr_t page = 0; page < page_count; page++) unmap_page(vaddr + page * PAGE_SIZE, false); Processor::broadcast_smp_message({ .type = Processor::SMPMessage::Type::FlushTLB, .flush_tlb = { .vaddr = vaddr, .page_count = page_count } }); } void PageTable::map_page_at(paddr_t paddr, vaddr_t vaddr, flags_t flags, MemoryType memory_type, bool send_smp_message) { ASSERT(vaddr); ASSERT(vaddr != fast_page()); if ((vaddr >= KERNEL_OFFSET) != (this == s_kernel)) Kernel::panic("mapping {8H} to {8H}, kernel: {}", paddr, vaddr, this == s_kernel); ASSERT(is_canonical(vaddr)); vaddr_t uc_vaddr = uncanonicalize(vaddr); ASSERT(paddr % PAGE_SIZE == 0); ASSERT(vaddr % PAGE_SIZE == 0); ASSERT(flags & Flags::Used); uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF; uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF; uint64_t pde = (uc_vaddr >> 21) & 0x1FF; uint64_t pte = (uc_vaddr >> 12) & 0x1FF; uint64_t extra_flags = 0; if (s_has_pge && pml4e == 511) // Map kernel memory as global extra_flags |= 1ull << 8; if (s_has_nxe && !(flags & Flags::Execute)) extra_flags |= 1ull << 63; if (flags & Flags::Reserved) extra_flags |= Flags::Reserved; if (memory_type == MemoryType::Uncached) extra_flags |= (1ull << 4); if (memory_type == MemoryType::WriteCombining) extra_flags |= (1ull << 7); if (memory_type == MemoryType::WriteThrough) extra_flags |= (1ull << 7) | (1ull << 3); // NOTE: we add present here, since it has to be available in higher level structures flags_t uwr_flags = (flags & (Flags::UserSupervisor | Flags::ReadWrite)) | Flags::Present; SpinLockGuard _(m_lock); uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); if ((pml4[pml4e] & uwr_flags) != uwr_flags) { if (!(pml4[pml4e] & Flags::Present)) pml4[pml4e] = V2P(allocate_zeroed_page_aligned_page()); pml4[pml4e] |= uwr_flags; } uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); if ((pdpt[pdpte] & uwr_flags) != uwr_flags) { if (!(pdpt[pdpte] & Flags::Present)) pdpt[pdpte] = V2P(allocate_zeroed_page_aligned_page()); pdpt[pdpte] |= uwr_flags; } uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); if ((pd[pde] & uwr_flags) != uwr_flags) { if (!(pd[pde] & Flags::Present)) pd[pde] = V2P(allocate_zeroed_page_aligned_page()); pd[pde] |= uwr_flags; } if (!(flags & Flags::Present)) uwr_flags &= ~Flags::Present; uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); pt[pte] = paddr | uwr_flags | extra_flags; invalidate(vaddr, send_smp_message); } void PageTable::map_range_at(paddr_t paddr, vaddr_t vaddr, size_t size, flags_t flags, MemoryType memory_type) { ASSERT(is_canonical(vaddr)); ASSERT(vaddr); ASSERT(paddr % PAGE_SIZE == 0); ASSERT(vaddr % PAGE_SIZE == 0); size_t page_count = range_page_count(vaddr, size); SpinLockGuard _(m_lock); for (size_t page = 0; page < page_count; page++) map_page_at(paddr + page * PAGE_SIZE, vaddr + page * PAGE_SIZE, flags, memory_type, false); Processor::broadcast_smp_message({ .type = Processor::SMPMessage::Type::FlushTLB, .flush_tlb = { .vaddr = vaddr, .page_count = page_count } }); } uint64_t PageTable::get_page_data(vaddr_t vaddr) const { ASSERT(is_canonical(vaddr)); vaddr_t uc_vaddr = uncanonicalize(vaddr); ASSERT(vaddr % PAGE_SIZE == 0); uint64_t pml4e = (uc_vaddr >> 39) & 0x1FF; uint64_t pdpte = (uc_vaddr >> 30) & 0x1FF; uint64_t pde = (uc_vaddr >> 21) & 0x1FF; uint64_t pte = (uc_vaddr >> 12) & 0x1FF; SpinLockGuard _(m_lock); uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); if (!(pml4[pml4e] & Flags::Present)) return 0; uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); if (!(pdpt[pdpte] & Flags::Present)) return 0; uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); if (!(pd[pde] & Flags::Present)) return 0; uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); if (!(pt[pte] & Flags::Used)) return 0; return pt[pte]; } PageTable::flags_t PageTable::get_page_flags(vaddr_t addr) const { return parse_flags(get_page_data(addr)); } paddr_t PageTable::physical_address_of(vaddr_t addr) const { uint64_t page_data = get_page_data(addr); return (page_data & PAGE_ADDR_MASK) & ~(1ull << 63); } bool PageTable::reserve_page(vaddr_t vaddr, bool only_free) { SpinLockGuard _(m_lock); ASSERT(vaddr % PAGE_SIZE == 0); if (only_free && !is_page_free(vaddr)) return false; map_page_at(0, vaddr, Flags::Reserved); return true; } bool PageTable::reserve_range(vaddr_t vaddr, size_t bytes, bool only_free) { if (size_t rem = bytes % PAGE_SIZE) bytes += PAGE_SIZE - rem; ASSERT(vaddr % PAGE_SIZE == 0); SpinLockGuard _(m_lock); if (only_free && !is_range_free(vaddr, bytes)) return false; for (size_t offset = 0; offset < bytes; offset += PAGE_SIZE) reserve_page(vaddr + offset); return true; } vaddr_t PageTable::reserve_free_page(vaddr_t first_address, vaddr_t last_address) { if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_end) first_address = (vaddr_t)g_kernel_end; if (size_t rem = first_address % PAGE_SIZE) first_address += PAGE_SIZE - rem; if (size_t rem = last_address % PAGE_SIZE) last_address -= rem; ASSERT(is_canonical(first_address)); ASSERT(is_canonical(last_address)); const vaddr_t uc_vaddr_start = uncanonicalize(first_address); const vaddr_t uc_vaddr_end = uncanonicalize(last_address); uint16_t pml4e = (uc_vaddr_start >> 39) & 0x1FF; uint16_t pdpte = (uc_vaddr_start >> 30) & 0x1FF; uint16_t pde = (uc_vaddr_start >> 21) & 0x1FF; uint16_t pte = (uc_vaddr_start >> 12) & 0x1FF; const uint16_t e_pml4e = (uc_vaddr_end >> 39) & 0x1FF; const uint16_t e_pdpte = (uc_vaddr_end >> 30) & 0x1FF; const uint16_t e_pde = (uc_vaddr_end >> 21) & 0x1FF; const uint16_t e_pte = (uc_vaddr_end >> 12) & 0x1FF; SpinLockGuard _(m_lock); // Try to find free page that can be mapped without // allocations (page table with unused entries) uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); for (; pml4e < 512; pml4e++) { if (pml4e > e_pml4e) break; if (!(pml4[pml4e] & Flags::Present)) continue; uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); for (; pdpte < 512; pdpte++) { if (pml4e == e_pml4e && pdpte > e_pdpte) break; if (!(pdpt[pdpte] & Flags::Present)) continue; uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); for (; pde < 512; pde++) { if (pml4e == e_pml4e && pdpte == e_pdpte && pde > e_pde) break; if (!(pd[pde] & Flags::Present)) continue; uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); for (; pte < 512; pte++) { if (pml4e == e_pml4e && pdpte == e_pdpte && pde == e_pde && pte >= e_pte) break; if (!(pt[pte] & Flags::Used)) { vaddr_t vaddr = 0; vaddr |= (uint64_t)pml4e << 39; vaddr |= (uint64_t)pdpte << 30; vaddr |= (uint64_t)pde << 21; vaddr |= (uint64_t)pte << 12; vaddr = canonicalize(vaddr); ASSERT(reserve_page(vaddr)); return vaddr; } } } } } // Find any free page vaddr_t uc_vaddr = uc_vaddr_start; while (uc_vaddr < uc_vaddr_end) { if (vaddr_t vaddr = canonicalize(uc_vaddr); is_page_free(vaddr)) { ASSERT(reserve_page(vaddr)); return vaddr; } uc_vaddr += PAGE_SIZE; } ASSERT_NOT_REACHED(); } vaddr_t PageTable::reserve_free_contiguous_pages(size_t page_count, vaddr_t first_address, vaddr_t last_address) { if (first_address >= KERNEL_OFFSET && first_address < (vaddr_t)g_kernel_start) first_address = (vaddr_t)g_kernel_start; if (size_t rem = first_address % PAGE_SIZE) first_address += PAGE_SIZE - rem; if (size_t rem = last_address % PAGE_SIZE) last_address -= rem; ASSERT(is_canonical(first_address)); ASSERT(is_canonical(last_address)); SpinLockGuard _(m_lock); for (vaddr_t vaddr = first_address; vaddr < last_address;) { bool valid { true }; for (size_t page = 0; page < page_count; page++) { if (!is_canonical(vaddr + page * PAGE_SIZE)) { vaddr = canonicalize(uncanonicalize(vaddr) + page * PAGE_SIZE); valid = false; break; } if (!is_page_free(vaddr + page * PAGE_SIZE)) { vaddr += (page + 1) * PAGE_SIZE; valid = false; break; } } if (valid) { ASSERT(reserve_range(vaddr, page_count * PAGE_SIZE)); return vaddr; } } ASSERT_NOT_REACHED(); } bool PageTable::is_page_free(vaddr_t page) const { ASSERT(page % PAGE_SIZE == 0); return !(get_page_flags(page) & Flags::Used); } bool PageTable::is_range_free(vaddr_t vaddr, size_t size) const { vaddr_t s_page = vaddr / PAGE_SIZE; vaddr_t e_page = BAN::Math::div_round_up(vaddr + size, PAGE_SIZE); SpinLockGuard _(m_lock); for (vaddr_t page = s_page; page < e_page; page++) if (!is_page_free(page * PAGE_SIZE)) return false; return true; } static void dump_range(vaddr_t start, vaddr_t end, PageTable::flags_t flags) { if (start == 0) return; dprintln("{}-{}: {}{}{}{}", (void*)canonicalize(start), (void*)canonicalize(end - 1), flags & PageTable::Flags::Execute ? 'x' : '-', flags & PageTable::Flags::UserSupervisor ? 'u' : '-', flags & PageTable::Flags::ReadWrite ? 'w' : '-', flags & PageTable::Flags::Present ? 'r' : '-' ); } void PageTable::debug_dump() { SpinLockGuard _(m_lock); flags_t flags = 0; vaddr_t start = 0; uint64_t* pml4 = (uint64_t*)P2V(m_highest_paging_struct); for (uint64_t pml4e = 0; pml4e < 512; pml4e++) { if (!(pml4[pml4e] & Flags::Present)) { dump_range(start, (pml4e << 39), flags); start = 0; continue; } uint64_t* pdpt = (uint64_t*)P2V(pml4[pml4e] & PAGE_ADDR_MASK); for (uint64_t pdpte = 0; pdpte < 512; pdpte++) { if (!(pdpt[pdpte] & Flags::Present)) { dump_range(start, (pml4e << 39) | (pdpte << 30), flags); start = 0; continue; } uint64_t* pd = (uint64_t*)P2V(pdpt[pdpte] & PAGE_ADDR_MASK); for (uint64_t pde = 0; pde < 512; pde++) { if (!(pd[pde] & Flags::Present)) { dump_range(start, (pml4e << 39) | (pdpte << 30) | (pde << 21), flags); start = 0; continue; } uint64_t* pt = (uint64_t*)P2V(pd[pde] & PAGE_ADDR_MASK); for (uint64_t pte = 0; pte < 512; pte++) { if (parse_flags(pt[pte]) != flags) { dump_range(start, (pml4e << 39) | (pdpte << 30) | (pde << 21) | (pte << 12), flags); start = 0; } if (!(pt[pte] & Flags::Used)) continue; if (start == 0) { flags = parse_flags(pt[pte]); start = (pml4e << 39) | (pdpte << 30) | (pde << 21) | (pte << 12); } } } } } } }