#include #include #include #define PRESENT (1 << 0) #define READ_WRITE (1 << 1) #define PAGE_SIZE 0x1000 #define PAGE_MASK ~(PAGE_SIZE - 1) #define CLEANUP_STRUCTURE(s) \ for (uint64_t i = 0; i < 512; i++) \ if (s[i] & PRESENT) \ goto cleanup_done; \ kfree(s) static MMU* s_instance = nullptr; void MMU::Intialize() { ASSERT(s_instance == nullptr); s_instance = new MMU(); } MMU& MMU::Get() { ASSERT(s_instance); return *s_instance; } static uint64_t* allocate_page_aligned_page() { void* page = kmalloc(PAGE_SIZE, PAGE_SIZE); ASSERT(page); memset(page, 0, PAGE_SIZE); return (uint64_t*)page; } MMU::MMU() { // Identity map from 4 KiB -> 4 MiB m_highest_paging_struct = allocate_page_aligned_page(); uint64_t* pdpt = allocate_page_aligned_page(); m_highest_paging_struct[0] = (uint64_t)pdpt | READ_WRITE | PRESENT; uint64_t* pd = allocate_page_aligned_page(); pdpt[0] = (uint64_t)pd | READ_WRITE | PRESENT; for (uint32_t i = 0; i < 2; i++) { uint64_t* pt = allocate_page_aligned_page(); for (uint64_t j = 0; j < 512; j++) pt[j] = (i << 21) | (j << 12) | READ_WRITE | PRESENT; pd[i] = (uint64_t)pt | READ_WRITE | PRESENT; } // Unmap 0 -> 4 KiB uint64_t* pt1 = (uint64_t*)(pd[0] & PAGE_MASK); pt1[0] = 0; // Load the new pml4 asm volatile("movq %0, %%cr3" :: "r"(m_highest_paging_struct)); } void MMU::AllocatePage(uintptr_t address) { ASSERT((address >> 48) == 0); address &= PAGE_MASK; uint64_t pml4e = (address >> 39) & 0x1FF; uint64_t pdpte = (address >> 30) & 0x1FF; uint64_t pde = (address >> 21) & 0x1FF; uint64_t pte = (address >> 12) & 0x1FF; uint64_t* pml4 = m_highest_paging_struct; if (!(pml4[pml4e] & PRESENT)) { uint64_t* pdpt = allocate_page_aligned_page(); pml4[pml4e] = (uint64_t)pdpt | READ_WRITE | PRESENT; } uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK); if (!(pdpt[pdpte] & PRESENT)) { uint64_t* pd = allocate_page_aligned_page(); pdpt[pdpte] = (uint64_t)pd | READ_WRITE | PRESENT; } uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK); if (!(pd[pde] & PRESENT)) { uint64_t* pt = allocate_page_aligned_page(); pd[pde] = (uint64_t)pt | READ_WRITE | PRESENT; } uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK); if (!(pt[pte] & PRESENT)) { pt[pte] = address | READ_WRITE | PRESENT; asm volatile("invlpg (%0)" :: "r"(address) : "memory"); } } void MMU::AllocateRange(uintptr_t address, ptrdiff_t size) { uintptr_t s_page = address & PAGE_MASK; uintptr_t e_page = (address + size - 1) & PAGE_MASK; for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE) AllocatePage(page); } void MMU::UnAllocatePage(uintptr_t address) { ASSERT((address >> 48) == 0); address &= PAGE_MASK; uint64_t pml4e = (address >> 39) & 0x1FF; uint64_t pdpte = (address >> 30) & 0x1FF; uint64_t pde = (address >> 21) & 0x1FF; uint64_t pte = (address >> 12) & 0x1FF; uint64_t* pml4 = m_highest_paging_struct; if (!(pml4[pml4e] & PRESENT)) return; uint64_t* pdpt = (uint64_t*)(pml4[pml4e] & PAGE_MASK); if (!(pdpt[pdpte] & PRESENT)) return; uint64_t* pd = (uint64_t*)(pdpt[pdpte] & PAGE_MASK); if (!(pd[pde] & PRESENT)) return; uint64_t* pt = (uint64_t*)(pd[pde] & PAGE_MASK); if (!(pt[pte] & PRESENT)) return; pt[pte] = 0; CLEANUP_STRUCTURE(pt); pd[pde] = 0; CLEANUP_STRUCTURE(pd); pdpt[pdpte] = 0; CLEANUP_STRUCTURE(pdpt); pml4[pml4e] = 0; cleanup_done: asm volatile("invlpg (%0)" :: "r"(address) : "memory"); } void MMU::UnAllocateRange(uintptr_t address, ptrdiff_t size) { uintptr_t s_page = address & PAGE_MASK; uintptr_t e_page = (address + size - 1) & PAGE_MASK; for (uintptr_t page = s_page; page <= e_page; page += PAGE_SIZE) UnAllocatePage(page); }