#include #include #include #include #include #include #include #include #include #include using i8 = int8_t; using i16 = int16_t; using i32 = int32_t; using i64 = int64_t; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; enum Variable { x, m, a, s }; enum class Comparison { Less, Greater, Always }; struct Rule { Variable operand1; i64 operand2; Comparison comparison; BAN::String target; }; using Workflows = BAN::HashMap>; struct Item { i64 values[4]; bool operator==(const Item& other) const { return memcmp(values, other.values, sizeof(values)) == 0; } }; struct ItemHash { BAN::hash_t operator()(const Item& item) const { return BAN::hash()(item.values[0]) ^ BAN::hash()(item.values[1]) ^ BAN::hash()(item.values[2]) ^ BAN::hash()(item.values[3]); }; }; i64 parse_i64(BAN::StringView str) { i64 result = 0; for (size_t i = 0; i < str.size() && isdigit(str[i]); i++) result = (result * 10) + (str[i] - '0'); return result; } bool get_line(FILE* fp, BAN::String& out) { out.clear(); bool success = false; char buffer[128]; while (fgets(buffer, sizeof(buffer), fp)) { success = true; MUST(out.append(buffer)); if (out.back() == '\n') { out.pop_back(); break; } } return success; } Workflows parse_workflows(FILE* fp) { Workflows workflows; BAN::String line; while (get_line(fp, line) && !line.empty()) { auto name = line.sv().substring(0, *line.sv().find('{')); MUST(workflows.emplace(name)); auto rule_str = line.sv().substring(*line.sv().find('{') + 1); rule_str = rule_str.substring(0, rule_str.size() - 1); auto rules_str = MUST(rule_str.split(',')); for (size_t i = 0; i < rules_str.size() - 1; i++) { Rule rule; rule.operand1 = (rules_str[i][0] == 'x') ? Variable::x : (rules_str[i][0] == 'm') ? Variable::m : (rules_str[i][0] == 'a') ? Variable::a : Variable::s; rule.operand2 = parse_i64(rules_str[i].substring(2)); rule.comparison = (rules_str[i][1] == '<') ? Comparison::Less : Comparison::Greater; rule.target = rules_str[i].substring(*rules_str[i].find(':') + 1); MUST(workflows[name].push_back(BAN::move(rule))); } MUST(workflows[name].emplace_back(Variable::x, 0, Comparison::Always, rules_str.back())); } return workflows; } BAN::Vector parse_items(FILE* fp) { BAN::Vector items; BAN::String line; while (get_line(fp, line) && !line.empty()) { auto values = MUST(line.sv().substring(1, line.size() - 2).split(',')); ASSERT(values.size() == 4); ASSERT(values[0][0] == 'x'); ASSERT(values[1][0] == 'm'); ASSERT(values[2][0] == 'a'); ASSERT(values[3][0] == 's'); Item item; item.values[0] = parse_i64(values[0].substring(2)); item.values[1] = parse_i64(values[1].substring(2)); item.values[2] = parse_i64(values[2].substring(2)); item.values[3] = parse_i64(values[3].substring(2)); MUST(items.push_back(item)); } return items; } bool satifies_rule(const Item& item, const Rule& rule) { switch (rule.comparison) { case Comparison::Always: return true; case Comparison::Less: return item.values[rule.operand1] < rule.operand2; case Comparison::Greater: return item.values[rule.operand1] > rule.operand2; } ASSERT_NOT_REACHED(); } bool is_accepted(const Item& item, const BAN::String& name, const Workflows& workflows) { const auto& workflow = workflows[name]; for (const auto& rule : workflow) { if (!satifies_rule(item, rule)) continue; if (rule.target == "A"_sv) return true; if (rule.target == "R"_sv) return false; return is_accepted(item, rule.target, workflows); } ASSERT_NOT_REACHED(); } i64 puzzle1(FILE* fp) { auto workflows = parse_workflows(fp); auto items = parse_items(fp); BAN::Vector accepted; for (const auto& item : items) if (is_accepted(item, "in"_sv, workflows)) MUST(accepted.push_back(item)); i64 result = 0; for (const auto& item : accepted) result += item.values[0] + item.values[1] + item.values[2] + item.values[3]; return result; } i64 puzzle2(FILE* fp) { auto workflows = parse_workflows(fp); BAN::Array, 4> values; for (const auto& workflow : workflows) { for (const auto& rule : workflow.value) { if (rule.comparison != Comparison::Always) { MUST(values[rule.operand1].insert(rule.operand2)); MUST(values[rule.operand1].insert(rule.operand2 + 1)); } } } for (i64 i = 0; i < 4; i++) { MUST(values[i].insert(1)); MUST(values[i].insert(4001)); } BAN::Array, 4> values_sorted; for (i64 i = 0; i < 4; i++) { MUST(values_sorted[i].reserve(values[i].size())); for (i64 value : values[i]) MUST(values_sorted[i].push_back(value)); BAN::sort::sort(values_sorted[i].begin(), values_sorted[i].end()); } i64 result = 0; for (u64 xi = 0; xi < values_sorted[0].size() - 1; xi++) { timespec time_start; clock_gettime(CLOCK_MONOTONIC, &time_start); for (u64 mi = 0; mi < values_sorted[1].size() - 1; mi++) { for (u64 ai = 0; ai < values_sorted[2].size() - 1; ai++) { for (u64 si = 0; si < values_sorted[3].size() - 1; si++) { Item item {{ values_sorted[0][xi], values_sorted[1][mi], values_sorted[2][ai], values_sorted[3][si] }}; if (!is_accepted(item, "in"_sv, workflows)) continue; i64 x_count = values_sorted[0][xi + 1] - values_sorted[0][xi]; i64 m_count = values_sorted[1][mi + 1] - values_sorted[1][mi]; i64 a_count = values_sorted[2][ai + 1] - values_sorted[2][ai]; i64 s_count = values_sorted[3][si + 1] - values_sorted[3][si]; result += x_count * m_count * a_count * s_count; } } } timespec time_stop; clock_gettime(CLOCK_MONOTONIC, &time_stop); u64 duration_us = (time_stop.tv_sec * 1'000'000 + time_stop.tv_nsec / 1'000) - (time_start.tv_sec * 1'000'000 + time_start.tv_nsec / 1'000); printf("step took %" PRIu64 ".%03" PRIu64 " ms, estimate %" PRIu64 " s\n", duration_us / 1000, duration_us % 1000, (values_sorted[0].size() - xi - 2) * duration_us / 1'000'000); } return result; } int main(int argc, char** argv) { const char* file_path = "/usr/share/aoc2023/day19_input.txt"; if (argc >= 2) file_path = argv[1]; FILE* fp = fopen(file_path, "r"); if (fp == nullptr) { perror("fopen"); return 1; } printf("puzzle1: %" PRId64 "\n", puzzle1(fp)); fseek(fp, 0, SEEK_SET); printf("puzzle2: %" PRId64 "\n", puzzle2(fp)); fclose(fp); }